首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Satellite multi-sensor data were used to investigate the evolution in time and space of Lake Trasimeno, a shallow and turbid lake in central Italy. Large-swath MERIS and MODIS sensors were proposed for regular broad scale monitoring of water quality, having compared the retrieved chlorophyll-a (Chl-a) concentration, Secchi disk (SD) depth and surface water temperature with the 2005–2008 time-series of the in situ data. Although, in a shorter time span, also the MERIS-derived total suspended matter (TSM) matched the in situ data. MERIS-derived water quality products confirmed the meso-eutrophic conditions of Lake Trasimeno (average Chl-a = 8.5 mg/m3) and the low levels of transparency (average SD = 1 m). A negative correlation found between water levels and Chl-a suggest the importance of maintaining water levels as close as possible to the hydrometric zero. A spatial analysis of TSM also reveals how small tributaries may affect the load of suspended solids in the southern part of the lake. Higher spatial resolution satellite images were exploited both to describe land use/cover transformation from 1978 to 2008 and to assess the recent changes in macrophyte colonisation patterns. Land cover change detection analysis results showed a decrease in cultivated areas starting from the early Nineties and the subsequent increase in unproductive terrain (bare land and pastures) and natural woods as well as the changing fragmentation of agricultural areas through time. A reduction in macrophyte beds from 2003 to 2008 was also observed. We expect the results of this study to support local water authorities in redrawing the management plan of Lake Trasimeno.  相似文献   

2.
In subtropical coastal waters, the explosive growth of phytoplankton under favorable conditions can lead to water discolouration and massive fish kills. Manual field sampling and laboratory analysis of chlorophyll-a concentration (Chl-a) as an indicator to algal biomass, is resources intensive and time consuming, delaying responses to disastrous harmful algal blooms. Cloudy weather often precludes the use of satellite images for water quality and algal bloom monitoring. This study aims at developing an estimator algorithm for quantitative mapping of surface Chl-a for coastal waters, based on surface reflectance measurement from an Unmanned Aerial Vehicle (UAV) with a five-band multispectral camera. The surface reflectance is obtained from calibrated multispectral images which are radiometric-corrected against incoming solar radiation. It is found that Chl-a has an inverse correlation with the Normalized Green-Red Difference Index (NGRDI). A regression estimator model for Chl-a from NGRDI is developed, showing excellent performance for fish farms in coastal waters with different characteristics. The technology is demonstrated for mapping the spatial and temporal variation of Chl-a during an algal bloom, offering a useful complement to traditional field monitoring for fisheries management and emergency response.  相似文献   

3.
Long-term variations of phytoplankton chlorophyll-a (Chl-a), nutrients,and suspended solids (SS) in Taihu Lake, a large shallow freshwater lake in China, during algal bloom seasons from May to August were analyzed using the monthly investigated data from 1999 to 2007. The effective accumulated water temperature (EAWT) in months from March to June was calculated with daily monitoring data from the Taihu Laboratory for Lake Ecosystem Research (TLLER).The concentrations of Chl-a and nutrients significantly decreased from Meiliang Bay to Central Lake. Annual averages of the total nitrogen (TN), total phosphorus (TP), and Chl-a concentrations, and EAWT generally increased in the nine years. In Meiliang Bay, the concentration of Chl-a was significantly correlated with EAWT, ammonia nitrogen (NH4+-N ), TN, the soluble reactive phosphorus (SRP),TP, and SS. In Central Lake, however, the concentration of Chl-a was only correlated with EAWT, TP, and SS. Multiple stepwise linear regression revealed that EAWT, dissolved total phosphorus (DTP), and TP explained 99.2% of the variation of Chl-a in Meiliang Bay, and that EAWT, NH4+-N, and TP explained 98.7% of the variation of Chl-a in Central Lake. Thus EAWT is an important factor influencing the annual change of phytoplankton biomass. Extreme climate change, such as extremely hot springs or cold springs, could cause very different bloom intensities in different years. It is also suggested that both nutrients and EAWT played important roles in the growth of phytoplankton in Taihu Lake. The climate factors and nutrients dually controlled the risk of harmful algal blooms in Taihu Lake. Cutting down phosphorus and nitrogen loadings from catchments should be a fundamental strategy to reduce the risk of blooms in Taihu Lake.  相似文献   

4.
C-phycocyanin (C-PC) and chlorophyll-a (Chl-a) concentrations for the eutrophic waters of Missisquoi Bay, Lake Champlain (VT–QC) were retrieved from Envisat's MERIS radiance data (300 m spatial resolution) and validated against coincident georeferenced transect observations. Pigment concentrations were also predicted from empirically calibrated QuickBird data (2.4 m spatial resolution) using selected band ratios and principal components analysis. The QuickBird NIR/Red band ratio accounted for approximately 80% of the variability in observed Chl-a concentration, allowing for detailed mapping of phytoplankton spatial distributions. C-PC concentrations, in contrast, were somewhat poorly modeled (R2 = 0.68). Use of these data for monitoring purposes, however, is also limited by the need for coincident field observations. Chl-a concentrations were also accurately retrieved from the MERIS data (Mean Relative Error = -0.6%) despite high concentrations of suspended particles and dissolved organic matter in the bay waters. C-PC concentrations were underestimated on average by 2.1%, but by 10–20% at high C-PC concentrations (≥ 80 μg/L) and as the proportion of cyanobacteria in the phytoplankton community decreased. The relatively high overall accuracies observed, however, attest to the robustness of the MERIS semi-analytical retrieval algorithms used to quantify potentially toxic cyanobacteria cell densities without the need for coincident field data. Our analyses over a 17 day period captured the peak and collapse of a late summer cyanobacterial bloom, illustrating the value of remote sensing to provide synoptic and timely information on the abundance and distribution of cyanobacterial populations that, in turn, can facilitate public health risk assessment.  相似文献   

5.
Accurate methods to track changes in lake productivity through time and space are critical to fisheries management. Chlorophyll a is the most widely studied proxy for ecosystem primary production and has been the topic of many studies. The main sources of chlorophyll a measurements are ship-based measures or multi-spectral satellite data. Autonomous underwater vehicles can survey large spatial extents approaching the scale of satellite data, but with the accuracy of ship-based water sampling methods. We use several statistical measures to compare measures of chlorophyll a collected in Lake Michigan with spatiotemporally matched satellite-derived measures of chlorophyll a from the MODIS Aqua multi-spectral sensor using NASA's OC3 and the Great Lakes Fit algorithms. Our findings show a near one to one relationship between AUV data and both satellite-derived data sets when the AUV data are coarsened to the resolution of the satellite data. A comparison of satellite-based chlorophyll a to AUV-derived chlorophyll summarized in discrete water depth bins suggested that, based on decreasing coefficients of determination, satellite estimates of chlorophyll accounted for the most variability in chlorophyll a concentrations in the upper 10 m of the water column, even though satellite sensors may detect past this depth.  相似文献   

6.
Phycocyanin (PC), as a characteristic pigment, is more suitable for monitoring cyanobacterial blooms and toxic cyanobacteria than chlorophyll-a (Chl-a). Because the absorption peak of PC is about ~620?nm, the application of remote sensing using a wavelength range of 615–630?nm becomes very attractive for the implementation of PC-targeted inversion algorithms. Numerous researchers have applied empirical and semi-analytical algorithms to derive PC concentration as proxies for cyanobacterial blooms. However, in contrast to Chl-a, the remote sensing estimation of PC concentration at the larger scale is still limited by the scarcity of data with sufficient spatial and spectral resolution. Therefore, this review attempts to provide a comprehensive overview of remote sensing techniques and retrieval algorithms as applied to the PC monitoring. The main emphasis is on the PC inversion algorithms and their realization via the available and perspective remote sensors. Based on the above analysis of state-of-the-art techniques and algorithms, the overall challenges and potentials of remote sensing-based cyanobacterial PC pigment retrieval are discussed in detail.  相似文献   

7.
Relatively little is known about the combined effects of solar activity and El Niño Southern Oscillation (ENSO) on both surface and subsurface hydrologic patterns, especially in Japan. Analyses of hydrologic responses to solar activity and ENSO could provide scientific guidance on regional water resource management. In this work, annual and decadal variations of hydrological processes (precipitation, river discharge, groundwater level) in Yoshino River basin and their possible interactions with solar activity and ENSO were analyzed using wavelet techniques. Results show the following: (1) The hydrological processes mainly fluctuate in the periodicities of 0.5, 1, 2–7 and 11 years. Strong cross power and high coherence between hydrological variability and sunspot number/Sea Surface Temperature (SST) were obtained in the periodicities of 2–7 and 11 years, indicating potential influence of solar and El Niño activities on hydrological patterns. (2) The solar–modulated ENSO plays a critical linkage between solar activity and hydrological processes. The ENSO transferred the solar energy to the local precipitation in the 22-year band; the influence was transferred by ENSO to streamflow in the periodicities of 7 and 11 years; and the linkage did not function in the SUN–ENSO–aquifer interaction system. (3) The precipitation, river discharge and aquifer water level show different responses to solar activity and ENSO. Solar activity and ENSO propagate both direct and indirect impacts on hydrological processes in different spatial and temporal domains.  相似文献   

8.
Lake biological parameters show important spatio-temporal heterogeneities. This is why explaining the spatial patchiness of phytoplankton abundance has been a recurrent ecological issue and is an essential prerequisite for objectively assessing, protecting and restoring freshwater ecosystems. The drivers of these heterogeneities can be identified by modeling their dynamics. This approach is useful for theoretical and applied limnology. In this study, a 3D hydrodynamic model of Lake Geneva (France/Switzerland) was created. It is based on the Delft3D suite software and includes the main tributary (Rhône River) and two-dimensional high-resolution meteorological forcing. It provides 3D maps of water temperature and current velocities with a 1?h time step on a 1?km horizontal grid size and with a vertical resolution of 1?m near the surface to 7?m at the bottom of the lake. The dynamics and the drivers of phytoplankton heterogeneities were assessed by combining the outputs of the model and chlorophyll-a concentration (Chl-a) data from MERIS satellite images between 2008 and 2012. Results highlight physical mechanisms responsible for the occurrence of seasonal hot-spots in phytoplankton abundance in the lake. At the beginning of spring, Chl-a heterogeneities are usually caused by an earlier onset of phytoplankton growth in the shallowest and more sheltered areas; spatial differences in the timing of phytoplankton growth can be explained by spatial variability in thermal stratification dynamics. In summer, transient and locally higher phytoplankton abundances are observed in relation to the impact of basin-scale upwelling.  相似文献   

9.
基于1961—2014年25个气象站资料,采用线性趋势法、标准化降水蒸散指数(SPEI)、M-K趋势检验以及皮尔逊相关分析法,分析了ENSO影响下安徽省1961—2014年近54年旱涝时空特征及对农业生产影响。研究表明:(1)与ENSO事件有关的中度以上干旱(洪涝)发生次数占中度以上干旱(洪涝)总次数的68%(83%),且干旱事件受厄尔尼诺次年及拉尼娜年影响大,洪涝受厄尔尼诺当年影响更大;(2)春、秋季SPEI波动幅度大于夏季和冬季,洪旱灾害风险增大。春季呈干旱化趋势,冬季在20世纪90年代湿润化达到最大,随后趋向于干旱化。与皖北地区相比较,皖南地区各月份趋势变化大;(3)安徽各地区的旱涝指数与SSTA的相关性在ENSO冷暖事件中不同,ENSO暖事件对皖南地区相关系数最大达0.32,超过99%置信度检验,影响更为显著,而ENSO冷事件对皖北地区相关系数最大达0.28,超过99%置信度检验,影响更为显著。随着滞后性月份的增加,安徽各区域的旱涝指数与SSTA的相关系数逐渐增大,皖南地区与SSTA相关性大于皖北地区,SSTA对未来3个月皖南旱涝有明显的影响;(4)近20年皖北、皖南地区稻、麦减产主要发生在ENSO事件年或者前一年,且减产率高。皖北地区和江淮地区的小麦减产发生次数较少,小麦减产率较大,而皖南地区小麦减产发生年份较多,小麦减产率较小。ENSO对农业生产的影响与旱涝分布状况有关,江淮地区良好的灌溉条件会降低ENSO年农业旱涝受灾风险。  相似文献   

10.
It is well known that lake-effect snowfall (LES) attributed to Lake Michigan has a significant impact on transportation in the Lower Peninsula of Michigan (LPM). Better understanding of the inter-annual variability and factors contributing to LES will provide a sound basis for local and regional community safety management and improve weather forecasting. This study attempts to examine the trend in LES and its influencing factors in the LPM using station snowfall measurements and statistical analysis. LES generally increased for the period of 1933–2015 with a higher increase before 1969 and less change since 1970. The warm phase (El Niño) of the ENSO has stronger impacts on LES than the cold phase, as demonstrated by stronger negative correlations between LES and sea surface temperatures in the Niño 3.4 region (SST34) during El Niño years. Both regionally averaged air temperatures and NAO have negative correlations with LES. Further, a larger amount of LES is produced during the years with negative phases of NAO than the years with positive phases. During the years with higher maximum ice coverage on Lake Michigan, LES increases in December and January and decreases in February as the ice coverage peaks in February/March. Findings from this study can provide insight to the impact of both regional environmental variables and teleconnections on LES in the LPM.  相似文献   

11.
利用1951-2018年河北围场地区气象站年降水量和同期的厄尔尼诺(ENSO)、太平洋年代际振荡(PDO)数据,采用集合经验模态分解(EEMD)和Morlet 小波分析等方法,研究了河北围场地区1951-2018年降水量的多尺度变化特征及其与厄尔尼诺和太平洋年代际振荡的关系。结果表明:1951-2018年围场地区年降水量总体上表现为增加的变化趋势,增幅为0.8 mm/10a;围场地区年降水量在时间尺度上存在显著的准4 a和准27 a的年际和年代际周期,分别与厄尔尼诺的2~7 a和太平洋年代际振荡的20~30 a周期相对应;交叉小波谱和小波凝聚谱表明,围场地区的年降水量与ENSO和PDO之间具有较好的共振周期,说明1951-2018年围场地区的年降水量可能受到厄尔尼诺和太平洋年代际振荡的影响。  相似文献   

12.
结合新疆阿克苏河流域1960-2011年4个气象站逐月降水资料,利用Z指数进行干湿情况分析,划分了干湿等级。运用MK非参数检验方法、分摊熵和Morlet小波分别对不同时间尺度(年、季、月)干湿趋势变化以及流域的干湿周期规律进行分析。结果表明:在20世纪90年代左右存在由干到湿的转变过程;月尺度上,各站Z指数总体呈不显著上升趋势;季尺度上,秋季Z指数呈显著上升趋势,U值通过了95%的显著性检验;年尺度上,各站Z指数总体呈显著上升趋势;阿克苏河流域存在14年左右的年代干湿周期和5年左右的年际干湿周期。  相似文献   

13.
Combining sea level anomalies with the mean dynamic topography derived from the geoid of the EGM08 global gravity field model and the CLS01 mean sea surface height, this study examined the characteristics of global geostrophic surface currents and the seasonal and interannual variabilities of the mean velocity of the Kuroshio (the Kuroshio source and Kuroshio extension).The patterns of global geostrophic surface currents we derived and the actual ocean circulation are basically the same. The mean velocity of the Kuroshio source is high in winter and low in fall, and its seasonal variability accounts for 18% of its total change. The mean velocity of the Kuroshio extension is high in summer and low in winter, and its seasonal variability accounts for 25% of its total change. The interannual variabilities of the mean velocity of the Kuroshio source and Kuroshio extension are significant. The mean velocity of the Kuroshio source and ENSO index are inversely correlated. However, the relationship between the mean velocity of the Kuroshio extension and the ENSO index is not clear. Overall, the velocity of the Kuroshio increases when La Ni a occurs and decreases when El Ni o occurs.  相似文献   

14.
Walleye (Sander vitreus) is an economically and culturally important species in Lake Erie that has experienced large interannual variability in recruitment. We examined the importance of prey biomass during the larval period to walleye recruitment while also considering the importance of temperature. Using nine years of field data over a 22-year period (1994–2016) for larval walleye and zooplankton, we found that strong recruitment events occurred in years when the biomass (dry µg L-1) of copepods (e.g., calanoids, cyclopoids) was greater during the spring larval period. Conversely, the biomass of cladocerans and mean spring water temperatures were poor predictors of walleye recruitment. Our results highlight the need to consider zooplankton availability during the larval period when seeking to understand the recruitment dynamics of freshwater fish populations such as Lake Erie walleye.  相似文献   

15.
庄河市是辽南地区的重要水源地,分析其干旱演变特性有利于该地区水资源的合理开发与利用,对于防旱减灾、合理布局产业结构具有重要的现实意义。本文根据庄河市1984年1月1日至2018年12月31日的逐日降水数据计算了1个月、3个月、6个月、12个月共4个不同时间尺度下的标准化降水指数(SPI),并基于SPI对该地区近35年的年际与季节干旱演变特征进行了分析。结果表明:在年际变化方面,庄河市的SPI在2000年以前波动幅度较小,说明该地区的降水在时间上分布较为均匀;但自2000年以来,SPI序列出现较大的波峰与波谷,说明降雨的分布不均匀性有所增强;SPI的时间序列趋势线斜率为负值,说明该地区整体上呈现偏旱趋势,因此其水资源压力不断增大。在季节演变特征方面,夏季干旱和秋季干旱呈现增强趋势;秋旱的发生频率最高,而夏旱的出现频率最低。本研究结果可为庄河地区的抗旱减灾与水资源规划提供科学依据。  相似文献   

16.
Northward flowing rivers are the most vulnerable system to a general early warming trend in terms of flood risk. In a changing climate, how well we understand the variability of precipitation and streamflow and the correspondence between them determines the appropriateness and efficiency of river engineering activities, flood control structures, and water resource management policies. Using both time and frequency domain approaches, this study investigated variations and periodicities in precipitation and discharge of two neighboring northward flowing river basins, the Red River of the North (referred to hereafter as the Red River) basin and the Little Missouri River basin in North America. Additionally, this study also characterized whether the most dominant quasiperiodic climate variation El Niño Southern Oscillation (ENSO) affected regional precipitation and streamflow. Results indicated that the southern and central Red River basin experienced significant increases in precipitation and discharge, particularly in cold season, while the Little Missouri River basin had no statistically significant change in precipitation or discharge. The global atmospheric oscillation ENSO had little effects on the regional precipitation and streamflow increases in the Red River basin. Furthermore, strong spectral coherences and prominent annual/semi‐annual periodicities in precipitation and discharge were revealed, confirming how precipitation determines frequency peaks and primary oscillation cycles of discharges in both basins. By removing broad‐scale climatic driver, this study indicated that some local forcing is most likely responsible for the excessive water abundances in the Red River basin, among which agriculture land usages stand out to be the most promising driver.  相似文献   

17.
Abstract

In this study, the effects of the El Niño-Southern Oscillation (ENSO) on the rainfall variability in the central (Savannah) and southern (Equatorial) regions of Sudan are examined. The annual rainfall data from 12 rainfall stations for 49 years are used in this examination. The results of the study show that the areal annual regionally averaged rainfall values in the two regions have decreased markedly since the early 1960s, with co-existence between the driest years and the warm ENSO events. The correlation between the annual regional rainfall values and the ENSO events is found to be relatively higher for the Savannah region than for the Equatorial region. Two regional ENSO-rainfall prediction models are developed, one for each region. These models use the ENSO sea surface temperature. The results of the models test show that both models can significantly improve the predictability of the annual rainfall values, which is essential for the planning and the management of water resources in Sudan  相似文献   

18.
We have examined streamflow variability in the Southern Appalachian region of the United States for the period 1950–2009. In particular, we have analysed the monthly discharge time series at two stations along the following rivers in North Carolina: (1) Little Tennessee River (LTR) near Prentiss and (2) French Broad River in Asheville. These two gauging stations are part of the Hydro‐Climatic Data Network (HCDN) system. The HCDN system was developed by the United States Geological Survey (USGS) to provide a long‐term database for tracking changes in flow and water quality of streams and rivers, with minimal human interventions. Using continuous wavelet transform (CWT), we have identified the dominant oscillatory modes in the monthly discharge data at these two rivers, and delineated the time intervals over which these modes may persist. It is found that in addition to the annual hydrologic cycle, the monthly discharge fluctuates at interannual timescales. These interannual variations may be linked to the Pacific North American (PNA) teleconnection pattern. Knowledge of the interannual periodicities may be useful for understanding long‐term streamflow variability in the Southern Appalachian region. Understanding patterns of streamflow variability may be important for water resources management operations in the surrounding area. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Since the 1990s, Lake Erie has experienced resurgent eutrophication due in part to climate change-driven increases in precipitation, which have combined with increasingly intensive agricultural practices in the region to produce excessive nutrient runoff into the lake. Harmful blooms of the cyanobacterium Microcystis aeruginosa (“Microcystis”) in Lake Erie’s western and central basins (WB and CB, respectively) have been a highly visible consequence of this eutrophication, however few studies have characterized intra- or interannual trends in less abundant, though likely more edible, phytoplankton taxa over the last 25 years. Here, we used the 20-year Lake Erie Plankton Abundance Study (LEPAS) dataset to quantify intra- and interannual trends in the dynamics of six major phytoplankton groups in the WB and CB during 1995–2015. Cyanobacteria biomass in the WB increased >1000-fold during this period, while biomass of all other major taxa groups increased between 10- and 100-fold. Early summer (June–July) and spring (May) communities saw more modest directional change in the biomass of both edible and less-edible taxa as well as community structure. Around 2008, the CB also began to experience Microcystis blooms concurrent with those in the WB, with similar, though less dramatic consequences for phytoplankton community structure and edible biomass. The biomass of several phytoplankton groups exhibited intra-annual oscillations with a ∼5-year period. The mechanisms underlying changes in the phytoplankton community structure and their consequences for higher trophic levels are not well understood, however increases in edible phytoplankton may be sustaining long-term upward trends in many zooplankton taxa.  相似文献   

20.
The water footprint (WF) of crop production is a comprehensive indicator that can reflect water consumption types, quantities and environmental impacts during the crop growth period. This study assesses interannual variability of green, blue and grey WFs of maize production in Beijing from 1978 to 2008. Results indicate that: (1) The multi-year average WF of maize was 1,031 m3 ton?1 which was 56 % green, 25 % blue, and 19 % grey; (2) the climate experienced a warm-dry period in Beijing during the period from 1978 to 2008, and this lead to the increase of crop water requirement and irrigation water requirement for maize with trends of 0.52 mm a?1 and 2.86 mm a?1, respectively; (3) under the combined effects of climate change and agricultural inputs, the total WF and green WF presented decreasing trends. The blue and grey WFs had clear increasing trends; (4) statistical analysis revealed that interannual variability of green and blue WFs were caused by both climatic factors (effective precipitation) and non-climatic (agricultural inputs) factors. The grey WF was mainly associated with non-climatic factors, such as chemical fertilizers consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号