首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies of climate change impacts on stream fish distributions commonly project the potential patterns of habitat loss and fragmentation due to elevated stream temperatures at a broad spatial scale (e.g. across regions or an entire species range). However, these studies may overlook potential heterogeneity in climate change vulnerability within local stream networks. We examined fine‐scale stream temperature patterns in two headwater brook trout Salvelinus fontinalis stream networks (7.7 and 4.4 km) in Connecticut, USA, by placing a combined total of 36 pairs of stream and air temperature loggers that were approximately 300 m apart from each other. Data were collected hourly from March to October 2010. The summer of 2010 was hot (the second hottest on record) and had well below average precipitation, but stream temperature was comparable with those of previous 2 years because streamflow was dominated by groundwater during base‐flow conditions. Nonlinear regression models revealed stream temperature variation within local stream networks, particularly during warmest hours of the day (i.e. late afternoon to evening) during summer. Thermal variability was primarily observed between stream segments, versus within a stream segment (i.e. from confluence to confluence). Several cold tributaries were identified in which stream temperature was much less responsive to air temperature. Our findings suggested that regional models of stream temperature would not fully capture thermal variation at the local scale and may misrepresent thermal resilience of stream networks. Groundwater appeared to play a major role in creating the fine‐scale spatial thermal variation, and characterizing this thermal variation is needed for assessing climate change impacts on headwater species accurately. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Intermittent and ephemeral streams in dryland environments support diverse assemblages of aquatic and terrestrial life. Understanding when and where water flows provide insights into the availability of water, its response to external controlling factors, and potential sensitivity to climate change and a host of human activities. Knowledge regarding the timing of drying/wetting cycles can also be useful to map critical habitats for species and ecosystems that rely on these temporary water sources. However, identifying the locations and monitoring the timing of streamflow and channel sediment moisture remains a challenging endeavor. In this paper, we analyzed daily conductivity from 37 sensors distributed along 10 streams across an arid mountain front in Arizona (United States) to assess spatiotemporal patterns in flow permanence, defined as the timing and extent of water in streams. Conductivity sensors provide information on surface flow and sediment moisture, supporting a stream classification based on seasonal flow dynamics. Our results provide insight into flow responses to seasonal rainfall, highlighting stream reaches very reactive to rainfall versus those demonstrating more stable streamflow. The strength of stream responses to precipitation are explored in the context of surficial geology. In summary, conductivity data can be used to map potential stream habitat for water-dependent species in both space and time, while also providing the basis upon which sensitivity to ongoing climate change can be evaluated.  相似文献   

3.
Although altered streamflow has been implicated as a major factor affecting fish assemblages, understanding the extent of streamflow alteration has required quantifying attributes of the natural flow regime. We used predictive models to quantify deviation from expected natural streamflow variability for streams in the eastern USA. Sites with >25% change in mean daily streamflow variability compared with what would be expected in a minimally disturbed environment were defined as having altered streamflow variability, based on the 10th and 90th percentiles of the distribution of streamflow variability at 1279 hydrological reference sites. We also used predictive models to assess fish assemblage condition and native species loss based on the proportion of expected native fish species that were observed. Of the 97 sites, 49 (50.5%) were classified as altered with reduced streamflow variability, whereas no sites had increased streamflow variability. Reduced streamflow variability was related to a 35% loss in native fish species, on average, and a >50% loss of species with a preference for riffle habitats. Conditional probability analysis indicated that the probability of fish assemblage impairment increased as the severity of altered streamflow variability increased. Reservoir storage capacity and wastewater discharges were important predictors of reduced streamflow variability as revealed by random forest analysis. Management and conservation of streams will require careful consideration of natural streamflow variation and potential factors contributing to altered streamflow within the entire watershed to limit the loss of critical stream habitats and fish species uniquely adapted to live in those habitats. Published in 2011 by John Wiley & Sons, Ltd.  相似文献   

4.
Intermittent headwater streams serve important functions for humans and wildlife in semi‐arid rangelands. Increases in ashe juniper coverage in central Texas over recent decades are believed to have negatively impacted stream flows. Few studies have examined relationships between aquatic species and environmental factors in these systems as well as the influence of juniper coverage on assemblage structure. During summer 2003 and spring 2004, we examined species–environment relationships to infer potential effects of juniper cover on aquatic ecology relative to local‐scale and watershed‐scale environmental variables. Fish and crayfish species assemblages and physicochemical variables were investigated in spring‐fed headwater tributaries of the Pedernales River, Texas. Fish abundance was much higher in summer 2003, whereas crayfish abundance was higher in spring 2004. Fish species richness was lower during spring 2004, possibly due to below average precipitation during spring 2004 that reduced deep‐water refugia. Higher abundance of crayfish in spring 2004 samples was probably due to their ability to survive low‐flow conditions, and a release from fish predation pressure. Fish assemblage structure was more strongly associated with local abiotic factors during spring 2004 when flow was reduced, whereas structure during summer 2003 samples suggested a relatively greater influence of predation. In general, juniper cover was weakly associated with fish and crayfish assemblages, although it tended to be positively associated with relatively high‐quality habitat for sensitive taxa (flowing runs with coarse substrate; deep, connected pools). We suggest that intermediate levels of juniper cover in the region provide indirect benefits to aquatic organisms. However, short‐term, local environmental factors appear to have a much greater influence than watershed vegetation on fish and crayfish assemblages in these intermittent streams. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Dredging or channelization has physically modified the majority (90%) of the 64 000 km of Danish stream network with substantial habitat degradation as a result. Analyses of physical habitat structure in streams, biota, catchment features and regional differences in hydrology, topography and geology have never been carried out in Denmark. Therefore, there is little knowledge of processes, interactions and patterns across the different scales. Physical habitats, catchment parameters and macroinvertebrates were sampled at 39 sites in three major river systems during summer and winter 1993. In‐stream physical conditions and catchment attributes affect the physical habitat structure in Danish lowland streams. Local differences in hydrology, land use, catchment topography and soil types correlated to the in‐stream physical habitat parameters. Local differences in hydrology and topography resulted in a separation of the Suså streams with respect to physical habitats. Mud deposition was pronounced at sites with low discharge and low near‐bed current velocity. Low mud cover was primarily associated with streams with high discharge located in pristine catchments. Stability in the streams was therefore closely linked to in‐stream deposition of fine sediment. Generally, macroinvertebrate community diversity increased as discharge increased. Mud cover negatively affected macroinvertebrate diversity and EPT taxon richness. Regional physical habitat structure and macroinvertebrate community structure were primarily associated with local variations in hydrology, geology and topography. Low‐energy streams were primarily located in the Suså river system and the high‐energy streams in the Gudenå and Storå river systems, leading to extensive deposition of mud during summer. Streams in the Suså river system generally had lower diversity and species richness compared to the streams in the Gudenå and Storå river systems. Hydraulic conditions and substratum dynamics in streams are important when managing lowland streams. This study therefore analysed interactions and parameter correlations between physical habitats, stream stability and catchment attributes as well as macroinvertebrate community structure across multiple scales. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
Natural streamflows play a critical role in stream ecosystems, yet quantitative relations between streamflow alteration and stream health have been elusive. One reason for this difficulty is that neither streamflow alteration nor ecological responses are measured relative to their natural expectations. We assessed macroinvertebrate community condition in 25 mountain streams representing a large gradient of streamflow alteration, which we quantified as the departure of observed flows from natural expectations. Observed flows were obtained from US Geological Survey streamgaging stations and discharge records from dams and diversion structures. During low‐flow conditions in September, samples of macroinvertebrate communities were collected at each site, in addition to measures of physical habitat, water chemistry and organic matter. In general, streamflows were artificially high during summer and artificially low throughout the rest of the year. Biological condition, as measured by richness of sensitive taxa (Ephemeroptera, Plecoptera and Trichoptera) and taxonomic completeness (O/E), was strongly and negatively related to the severity of depleted flows in winter. Analyses of macroinvertebrate traits suggest that taxa losses may have been caused by thermal modification associated with streamflow alteration. Our study yielded quantitative relations between the severity of streamflow alteration and the degree of biological impairment and suggests that water management that reduces streamflows during winter months is likely to have negative effects on downstream benthic communities in Utah mountain streams. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

7.
Using geographic information system and topographic maps, 5829 headwater streams in Florida were surveyed for several parameters including elevation, stream length, flow regime and surrounding geology, and vegetation. Each was assigned to one of four headwater types: wetland, seep, lake, and spring. Wetland headwaters were the most common and widespread followed by seeps, many displaying temporary flow, while springs were perennial and least numerous. Four groups of Florida rivers were identified through cluster analysis of drainage densities (number headwaters/km of river length). Group 1 consisted of six rivers with lowest drainage densities (0.30–1.39 streams/km main channel). All were coastal rivers of peninsular Florida and, with one exception, drain to the Gulf of Mexico. Seven of eight rivers (group 2) with intermediate drainage densities (1.77–3.04 streams/km main channel) were located in peninsular Florida. Only three of 12 rivers comprising the two groups (groups 3 and 4) with greatest drainage densities (5.16–9.37 and 15.49–16.96 streams/km main channel) were not located in the Florida panhandle. Stream conservation efforts should focus on both highly complex dendritic river networks of the panhandle and on the 7000 km2 area in central Florida mostly lacking headwaters that may become a significant dispersal bottleneck for aquatic biota seeking refugia farther north from projected climate change. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Reservoirs are sometimes managed to meet agricultural and other water demands, while also maintaining streamflow for aquatic species and ecosystems. In the Henrys Fork Snake River, Idaho (USA), irrigation-season management of a headwater reservoir is informed by a flow target in a management reach ~95 km downstream. The target is in place to meet irrigation demand and maintain aquatic habitat within the 11.4 km management reach and has undergone four flow target assignments from 1978 to 2021. Recent changes to irrigation-season management to maximize reservoir carryover warranted investigation into the flow target assignment. Thus, we created a streamflow-habitat model using hydraulic measurements, habitat unit mapping, and published habitat suitability criteria for Brown Trout (Salmo trutta), Rainbow Trout (Oncorhynchus mykiss), and Mountain Whitefish (Prosopium williamsoni). We used model output to compare habitat availability across two management regimes (1978–2017 and 2018–2021). We found that efforts to minimize reservoir releases in 2018–2021 did not reduce mean irrigation-season fish habitat relative to natural flow, but did reduce overall fish habitat variability during the irrigation season compared to streamflow management in 1978–2017. Field observations for this research led to an adjusted flow target in 2020 that moved the target location downstream of intervening irrigation diversions. Using our model output, we demonstrated that moving the location of the target to account for local irrigation diversions will contribute to more consistently suitable fish habitat in the reach. Our study demonstrates the importance of site selection for establishing environmental flow targets.  相似文献   

9.
Young Atlantic salmon appear to occupy similar suitable stream habitats year round. The salmon is stationary, often associated with “home stones”. At low water temperatures in winter, the fish seek shelter in the substrate, which has to be coarse enough to provide interstices for the fish to hide in. In summer, salmon select habitats within tolerable ranges of habitat variables, rather than narrow optima. It is suggested that a genetic basis to habitat evaluation allows incorporation of the full range of behavioural responses. This is important as partially different habitats may be selected in diverse streams. Habitat availability influences both habitat use and habitat preferences. Suitable summer habitats have depths in the range 5–90 cm; mean water velocities 10–80 cm s?1, and gravel-to-boulder substratum. Fish size affects habitat use, as young of the year are found in the more shallow habitats closer to the stream banks, whereas the older parr use a wider range of habitats. In the absence of brown trout, the Atlantic salmon parr, and especially young of the year, use habitats otherwise inhabited by brown trout. Water velocities are in many cases the principal physical habitat variable determining the distribution of Atlantic salmon in streams, but other variables are also important. Depth is more important in small streams than in large streams.  相似文献   

10.
Surface water is critical for meeting water needs in British Columbia’s Okanagan Basin, but the timing and magnitude of its availability is being altered through climate and land use changes and growing water demand. Greater attention needs to be given to the multiple, interacting factors occurring and projected to occur in this region if water is going to be sustainably provisioned to human users and available for ecosystem needs. This study contributes to that goal by integrating information on physical, biological and social processes in order to project a range of possible changes to surface water availability resulting from land-use, climatic and demographic change, as well as from Mountain Pine Beetle infestation. An integrated water management model (Water Evaluation and Planning system, WEAP) was used to consider future scenarios for water supply and demand in both unregulated and reservoir-supported streams that supply the District of Peachland. Results demonstrate that anticipated future climate conditions will critically reduce streamflow relative to projected uses (societal demand and ecological flow requirements). The surficial storage systems currently in place were found unable to meet municipal and instream flow needs during “normal” precipitation years by the 2050s. Improvements may be found through demand reduction, especially in the near term. Beyond the implications for the District of Peachland, this work demonstrates a method of using an accessible modeling tool for integrating knowledge from the fields of climate science, forest hydrology, water systems management and stream ecology to aid in water and land management decision-making.  相似文献   

11.
Warming temperatures can have negative consequences for aquatic organisms, especially cold-adapted fishes such as Pacific salmon. The magnitude of warming is related to the thermal sensitivity of streams in salmon-bearing watersheds (i.e., change in stream temperature for every 1°C increase in air temperature), which can vary based on several factors including streamflow. Management actions to increase streamflow may therefore benefit salmon by decreasing thermal sensitivity. However, the effects of streamflow on thermal sensitivity are often complex, as the temperature of flow inputs can directly increase or decrease temperatures. This study aimed to disentangle the influence of streamflow on thermal sensitivity and stream temperature over 4 years in the Nicola River, a regulated semiarid watershed in south-central British Columbia, Canada. A statistical modeling approach was used to estimate streamflow effects on stream temperatures and thermal sensitivity (i.e., relationship of regional air temperature to stream temperature) at 12 sites from 2018 to 2021. Streamflow had a variable influence on stream temperatures across the watershed via both direct effects and by modulating thermal sensitivity. At a given site, streamflow was generally negatively associated with summer daily mean stream temperature, but the magnitude of its influence varied among locations and years. The influence of streamflow on thermal sensitivity was also highly variable both spatially and temporally. The analysis suggests that there may be complex relationships between streamflow, stream temperature, and thermal sensitivity, which complicates the efficacy of flow as a lever to mitigate high temperatures in regulated systems.  相似文献   

12.
An important question for salmon restoration efforts in the western USA is ‘How should habitat restoration plans be altered to accommodate climate change effects on stream flow and temperature?’ We developed a decision support process for adapting salmon recovery plans that incorporates (1) local habitat factors limiting salmon recovery, (2) scenarios of climate change effects on stream flow and temperature, (3) the ability of restoration actions to ameliorate climate change effects, and (4) the ability of restoration actions to increase habitat diversity and salmon population resilience. To facilitate the use of this decision support framework, we mapped scenarios of future stream flow and temperature in the Pacific Northwest region and reviewed literature on habitat restoration actions to determine whether they ameliorate a climate change effect or increase life history diversity and salmon resilience. Under the climate change scenarios considered here, summer low flows decrease by 35–75% west of the Cascade Mountains, maximum monthly flows increase by 10–60% across most of the region, and stream temperatures increase between 2 and 6°C by 2070–2099. On the basis of our literature review, we found that restoring floodplain connectivity, restoring stream flow regimes, and re‐aggrading incised channels are most likely to ameliorate stream flow and temperature changes and increase habitat diversity and population resilience. By contrast, most restoration actions focused on in‐stream rehabilitation are unlikely to ameliorate climate change effects. Finally, we illustrate how the decision support process can be used to evaluate whether climate change should alter the types or priority of restoration actions in a salmon habitat restoration plan. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
In this study, we analysed the factors affecting species richness and introduced species component patterns in native fish faunas of 30 streams of the Middle Basin of the Guadiana River. From a principal component analysis and a stepwise multiple regression analysis performed on a data matrix composed of ten hydrological and biotic variables, we showed that: (1) fish species richness increased with stream length and watershed area, (2) the number of native species in a stream declined as channelizations and river regulation (constructions of dams) are higher, whereas introduced species increased in the same way, (3) the two main negative factors affecting native ichthyofaunas affected dissimilar ecological areas: channelizations, which depend on land‐use intensity of floodplain, mainly occurred in lower reaches of streams, but construction of dams mainly took place in upper sections of rivers, (4) the length of the remaining well‐preserved reaches in a stream appeared to be the only factor accurately predicting native fish species richness, and (5) native fish faunas of small isolated streams are more vulnerable to habitat alteration than those of large streams. Both isolation and fragmentation of populations were recorded, so the conservation status of native and highly endemic fish fauna of the study area is extreme. Protection of the few still extant, well‐preserved small streams and upper reaches, habitat restoration of channeled areas, and inclusion of the need for native fish fauna conservation in long‐term public planning of water use become a priority. Fish communities appear to be a sensitive indicator of biological monitoring to assess environmental degradation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
Few comprehensive studies on stream assessment and biomonitoring have been conducted in tropical, freshwater watersheds. Currently under threat from climate change, urbanization and increasing freshwater demands, there is a need for innovative approaches to tropical watershed assessment and management. This study investigated cascade habitat macroinvertebrate communities among four tropical mountain streams with the goal of enhancing future efforts to identify flow biocriteria for watersheds of Polynesia. Cascade macroinvertebrate communities were compared between streams of differing size and magnitude of flow removal to evaluate the biological effects of water withdrawal on benthic communities. Two cascade microhabitats, identified as torrenticolous and amphibious, were evaluated for macroinvertebrate community differences and presence of native taxa among watersheds. Cascade habitat in general was reduced, by as much as 98%, in downstream reaches, having a significant impact on the stream ecosystem physical template important for native stream communities. In addition, two‐way ANOVA results revealed no main effects, but significant interactions of watershed size and flow removal on mean macroinvertebrate density for torrenticolous microhabitats; however, the opposite was true for the amphibious microhabitat. Diversity was significantly higher under undiverted flow conditions (t = 4.21, df = 272, p = 0.0004) and in torrenticolous microhabitats (t = 3.86, df = 272, p < 0.0001) over the entire study period. The amphibious microhabitat was composed of 39% native taxa, while the torrenticolous microhabitat contained <7%. This study provides new options for biomonitoring of native populations in Polynesian watersheds. Further studies that support the development of in‐stream flow criteria to preserve cascades are important to understanding the role of this habitat in tropical stream ecosystem function. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
We collected fish samples and measured physical habitat characteristics, including summer stream temperatures, at 156 sites in 50 tributary streams in two sampling areas (Upper Fraser and Thompson Rivers) in British Columbia, Canada. Additional watershed characteristics were derived from GIS coverages of watershed, hydrological and climatic variables. Maximum weekly average temperature (MWAT), computed as an index of summer thermal regime, ranged from 10 to 23 °C. High values of MWAT were associated with large, warm, low relief watersheds with a high lake influence. Measures of community similarity suggested that the fish community changed most rapidly through a lower transition zone at an MWAT of about 12 °C and an upper transition zone at an MWAT of about 19 °C. These results were confirmed using existing fisheries inventory data combined with predictions of MWAT from a landscape‐scale regression model for the Thompson River watershed. For headwater sites in the Chilcotin River watershed (which drains into the middle Fraser River), the relative dominance of bull trout versus rainbow trout (based on inventory data) decreased with increasing predicted MWAT although the distinction was not as clear as for the Thompson River sites. The fish communities in these watersheds can be characterized in terms of very cold water (bull trout and some cold water species), cold water (salmonids and sculpins) and cool water (minnows and some cold water salmonids). The two transition zones (ca 12 and 19 °C) can be used to identify thresholds where small changes in stream temperature can be expected to lead to large changes in fish communities. Such clear, quantifiable thresholds are critical components of a management strategy designed to identify and protect vulnerable fish communities in streams where poor land use practices, alone or in combination with climatic change, can lead to changes in stream temperatures. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.

Considering changes in irrigation planning and development due to climate change is necessary to avoid system failure. This study demonstrated that changes in dependable flow and diversion water requirements in the future due to climate change will reduce potential irrigable areas. Climate change were based on the published projected climate in the study area. The dependable flow derived from successfully calibrated and validated Soil and Water Assessment Tool (SWAT) model streamflow simulations and the diversion water requirements based on the CROPWAT estimations of irrigation scheme were used to assess the potential irrigable areas. Substantial reductions in potential rice production areas (-4% to – 39%) were largely due to dwindled dependable flow (-1% to -25%) and an increase in diversion water requirement (+?7% to?+?26%). Reduction in potential irrigable area was projected during dry and normal years and may worsen towards the late twenty-first century under the worst-case climate scenario. Swelling of rivers during wet years will increase stream flows and potential irrigable areas but may also pose a danger of flooding. The development of water storage structures is necessary to reduce the adverse impacts of too much water during the wet years. Crop calendars should also be retrofitted to optimize the use of available rainfall during dry and normal years and climate-proof future irrigation systems. The results showed that it is necessary to incorporate climate change in irrigation planning and development. The methodologies described here could be used to climate-proof future irrigation systems in other areas in the Philippines and other countries.

  相似文献   

17.
Fishery biologists are increasingly recognizing the importance of considering the dynamic nature of streams when developing streamflow policies. Such approaches require information on how flow regimes influence the physical environment and how those factors, in turn, affect species‐specific demographic rates. A more cost‐effective alternative could be the use of dynamic occupancy models to predict how species are likely to respond to changes in flow. To appraise the efficacy of this approach, we evaluated relative support for hypothesized effects of seasonal streamflow components, stream channel characteristics, and fish species traits on local extinction, colonization, and recruitment (meta‐demographic rates) of stream fishes. We used 4 years of seasonal fish collection data from 23 streams to fit multistate, multiseason occupancy models for 42 fish species in the lower Flint River Basin, Georgia. Modelling results suggested that meta‐demographic rates were influenced by streamflows, particularly short‐term (10‐day) flows. Flow effects on meta‐demographic rates also varied with stream size, channel morphology, and fish species traits. Small‐bodied species with generalized life‐history characteristics were more resilient to flow variability than large‐bodied species with specialized life‐history characteristics. Using this approach, we simplified the modelling framework, thereby facilitating the development of dynamic, spatially explicit evaluations of the ecological consequences of water resource development activities over broad geographic areas. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

18.
Hungry Horse Dam on the South Fork Flathead River, Montana, USA, has modified the natural flow regimen for power generation, flood risk management and flow augmentation for anadromous fish recovery in the Columbia River. Concern over the detrimental effects of dam operations on native resident fishes prompted research to quantify the impacts of alternative flow management strategies on threatened bull trout (Salvelinus confluentus) and westslope cutthroat trout (Oncorhynchus clarkii lewisi) habitats. Seasonal and life‐stage specific habitat suitability criteria were combined with a two‐dimensional hydrodynamic habitat model to assess discharge effects on usable habitats. Telemetry data used to construct seasonal habitat suitability curves revealed that subadult (fish that emigrated from natal streams to the river system) bull trout move to shallow, low‐velocity shoreline areas at night, which are most sensitive to flow fluctuations. Habitat time series analyses comparing the natural flow regimen (predam, 1929–1952) with five postdam flow management strategies (1953–2008) show that the natural flow conditions optimize the critical bull trout habitats and that the current strategy best resembles the natural flow conditions of all postdam periods. Late summer flow augmentation for anadromous fish recovery, however, produces higher discharges than predam conditions, which reduces the availability of usable habitat during this critical growing season. Our results suggest that past flow management policies that created sporadic streamflow fluctuations were likely detrimental to resident salmonids and that natural flow management strategies will likely improve the chances of protecting key ecosystem processes and help to maintain and restore threatened bull trout and westslope cutthroat trout populations in the upper Columbia River Basin. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Intermittent streams lose surface flow during some portion of the year and can be important breeding and rearing habitats for stream biota. However, habitat contraction and deteriorating water quality across the summer can result in harsh conditions and mortality. We explored patterns of drying in a small intermittent stream across the summer in Mediterranean‐climate California, including across 4 years that differed in antecedent precipitation. Wet–dry mapping revealed earlier stream fragmentation following dry winters and that entire sections of the stream varied in their propensity to dry suggesting an important influence of geomorphology on drying. Within two ‘slow‐drying’ reaches, initial riffle volumes were higher following wetter winters, but the rate of riffle drying was higher following wet years, presumably because higher initial volumes resulted in greater drying capacity. Initial pool volumes were similar across years, but the rate of pool drying was faster following dry versus wet winters (pool half‐life ranged from 9.7 weeks in the driest year to 26.3 weeks in the wettest year). Stream temperature differed among years, but differences were slight, and temperatures rarely exceeded optimal conditions for trout growth. We observed limited movement of trout during drier years and found that movement was negatively associated with pool depth, riffle length and date, and positively associated with riffle volume. Overall, we found that antecedent rainfall influenced variability in pool drying more than riffle drying, that entire sections of the creek varied in their propensity to dry and that biological fragmentation preceded physical fragmentation by 3 to 7 weeks. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
The round goby (Neogobius melanostomus) is increasingly being reported in tributaries of the Laurentian Great Lakes where these fish have been shown to adversely impact native stream biota. Determining the characteristics and distribution of invaded streams are the first steps toward effective round goby management. We sampled 30 tributaries in the Great Lakes basin and characterized each in terms of nine physical reach-scale attributes. Round goby were detected in 14 streams where abundances ranged from 4% to 53% of the fish sampled in each stream. Round goby was the single most abundant fish species sampled, constituting 14% of all fish encountered across all sites, and 30% of individuals in round goby-present sites. Round goby-present sites were larger, had lower channel slopes, less large wood, and less canopy cover than round goby-absent sites, suggesting that these attributes may promote round goby establishment. Mottled sculpin, cyprinids, brook stickleback, white sucker and rainbow trout were associated with goby absence while centrarchids, percids, yellow bullhead, and mud minnow were associated round goby presence. Collectively these results demonstrate that round goby are widespread in eastern Michigan tributaries to the Great Lakes, present in streams with a range of physical habitat characteristics, and that round goby presence is associated with certain fish species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号