首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为评估已建区现状排水管网情况并以问题为导向提出针对性的多尺度分区管网排水能力提升优化策略,以北京市东城区为例,构建基于InfoWorks ICM的城市综合流域排水模型,选用两场实测降雨分别进行参数率定及模型验证,结果表明模型具有较高的精度与可靠性。在此基础上,利用该模型对1a、3a、5a、10a四种不同设计重现期、历时1h降雨情景下的排水管网排水能力进行模拟,分三个尺度对研究区域模拟结果的分析如下:(1)城市尺度的管网排水能力不足1a一遇、1~3a一遇、3~5a一遇、5~10a一遇、10a一遇的管线长度比例分别为52%、10%、4%、6%、29%;(2)地块尺度功能分区排水能力排序为:公园绿地≥居民小区商务行政办公区商业区;(3)道路尺度的主次干道管线排水能力不足1a一遇、1~3a一遇、3~5a一遇、5~10a一遇、10a一遇的管线长度比例分别为38%、9%、4%、7%、42%。针对不同尺度下排水管网排水能力的现状评估结果,诊断并分析排水能力不足的问题及成因,以期通过系统性的管网现状评估及优化方案,为国内其他老城区的管网排水能力提升提供一套适用性的优化改造策略。  相似文献   

2.
浙江省宁波市溪口镇经常发生内涝灾害现象,造成了严重的经济损失。为解决此问题,采用SWMM(Storm Water Management Model)模型对溪口镇中心城区现状雨水管网系统进行模拟,通过分析模拟结果中检查井的溢流量和溢流位置,找出了造成节点溢流的原因并提出了相应的改造措施。研究结果表明:由于管网淤堵和管径过小的问题,中心城区现状管网系统排水能力较弱,不足以抵御2 a一遇的降雨事件。针对以上问题,提出了清淤和增大管径的改造措施,其中清淤措施可在一定程度上提高管网排水能力,改造措施1(49个管段管径由原来的400 mm增加到800 mm)和措施2(57个管段管径由原来的400 mm增加到800 mm)分别可抵御3 a一遇和5 a一遇的降雨事件。研究结果可为溪口镇中心城区排水系统改造提供参考依据。  相似文献   

3.
以北京市东城区为研究区,基于InfoWorks ICM模型开展海绵城市改造效果分析研究,通过2018年8月11日、12日的场次降雨实测流量过程、积水深度来验证模型的适用性,对研究区降雨重现期为1 a、3 a、5 a和10 a的管网排水能力评估发现,引起研究区内涝频发的主要原因有:研究区管网排水能力普遍偏低、不透水下垫面面积占比高、局部微地形低凹等因素。通过模型模拟发现,当研究区内的新建、改建项目按照《雨水控制与利用工程设计规范》(DB 11685-2013)中要求实施后,排水能力不足1年一遇管网长度比例减少12%,1年一遇至3年一遇、大于10年一遇管网长度比例提高了2%、10%。"2016.7.20"场次暴雨的内涝积水模拟结果显示,改造后内涝最大积水深度减小了0.31 m,积水范围减小了8.67 hm~2,积水总量减少了3.22万m~3。  相似文献   

4.
基于 MIKE URBAN 的城市内涝模型应用   总被引:1,自引:0,他引:1  
针对日益突出的城市内涝问题,为了减少内涝灾害的发生、达到防洪排涝的目的,以成都市某小区为例,基于对小区排水管网的概化处理,雨量分配利用芝加哥雨型,应用 MIKE URBAN 软件模拟小区排水管网在不同降雨强度下承压运行情况及管点溢流情况,并通过设置小型调蓄池和扩增管径两种途径改善城市内涝状况。结果表明: 改造后管网设计重现期由 2 年一遇提高到 10 年一遇,管段承压状况得到明显改善。在遭遇 10 年一遇降雨时,管道峰值流量明显降低,典型管道削峰率达62. 5% ,管网过水能力大幅度增加。在今后排水系统改造中,应当使城市管网与雨水调蓄池等海绵措施相结合,实现削减峰值雨量,从源头上防止内涝的发生。该模型具有建模简单、运算精确的特点,对城市防洪排涝相关研究有较好的借鉴意义。  相似文献   

5.
为有效评估城市雨洪管理效果,以西安市小寨区域为例,搭建耦合管网模型和地表漫流模型的绿-灰-蓝雨洪系统综合模拟模型,从径流控制、管网排水与城市防涝等方面解析城市雨洪管理现状。研究表明:小寨海绵城市改造区年径流总量控制率基本可满足要求;2 a一遇、3 a一遇降雨排水瓶颈的管网长度分别为145.02、181.91 km; 20~50 a一遇暴雨条件下,海绵城市改造区无明显积水,大环河北岸、南三环中段和雁展路局部积水深度大于15 cm。该模型能够直观表现地表雨水漫流和管道水流运动过程,科学评估城市排水防涝与生态海绵城市建设效果。  相似文献   

6.
为解决城市暴雨内涝灾害问题,以宁德市主城区为例,构建了基于Infoworks ICM的城市综合流域排水模型,利用该模型对2、3、5、30a4种不同设计重现期的暴雨情景下研究区域排水管网系统的排水能力和积水深度进行模拟。结果表明,该模型能较好地评估研究区域的排水能力。经模型模拟,采取管网改造方案等综合性措施以后,可降低宁德市主城区内涝风险,保障城市安全。  相似文献   

7.
针对南方大多数老城区排涝措施不足、一到汛期就出现积水的问题,为了优选合理经济的排涝措施方案,采用SWMM模型研究某片老城区在不同重现期降雨的影响,分析现有排水管网的排水能力,对超载管道及积水区域提出了两个初步排涝方案。其中方案一为增大溢流段管径20%~50%,方案二为20%汇水面积布设LID措施,模拟结果表明两个方案在降雨重现期P≥10a时,都有部分区域出现积水现象。为此提出两个优化排水方案,即调整溢流区域管径大小、又调整布设LID措施比例的方案。其中方案三将管网管径改造比例调整为方案一的50%,LID措施占研究区域面积比例为方案二的50%;方案四中管网管径改造比例调整为方案一的100%,LID措施占研究区域面积比例为方案二的25%。通过排涝效果和经济效益综合分析,当防涝设计重现期P20a时,应选择方案三,重LID措施比例、轻管道改造比例;当防涝设计重现期P≤20a时,应选择方案四,重管道改造比例、轻LID措施比例。研究区排水防涝设计标准为30a一遇暴雨不成灾,建议选择方案三。研究成果对选择城市进行管网改造比例和LID措施比例有着一定的借鉴和指导意义,但由于受到其他参考指标的影响,最优比例仍有待深入研究。  相似文献   

8.
采用3场次实测暴雨(20130915,20150806和20160902)内涝淹没资料,验证了基于PCSWMM的葫芦岛市雨洪模型,然后对葫芦岛市现状排水能力及城市内涝风险,选用同频率设计潮位和不同降雨组合进行模拟评估。研究表明:模型的可靠性和精准度较高,葫芦岛市低于1a一遇排水能力的系统管网为84.1%,可为揭示城市内涝风险等级在不同重现期暴雨的分布规律提供科学的依据。  相似文献   

9.
构建了基于PCSWMM的海甸岛城市雨洪模型,采用3场次实测暴雨(20081013,20101005和20111005)内涝淹没资料对模型进行验证,结果表明所构建模型具有良好的精度和可靠性。以1 a、2 a、5 a、10 a和20 a 5种设计重现期降雨组合同频率设计潮位进行模拟计算,对海甸岛现状排水能力进行评估,结果表明,海甸岛84.8%管网排水能力低于1年一遇。以5 a、10 a、20 a、50 a降雨组合对应潮位对海甸岛进行内涝风险评估,得到了海甸岛4种不同重现期暴雨的内涝风险等级划分状况。  相似文献   

10.
城市内涝灾害给城市居民生命、财产安全造成了严重威胁。以长春市南关区为例,以二维非定恒定流为基本骨架,以不规则网格概化地形,用一维非恒定流描述排水管网,建立了城市暴雨内涝数值模型。该模型包含产流模型、汇流模型、排水模型及内涝模型。以30 a,50 a,100 a一遇的暴雨情景,对居民出行困难度进行了评价。验证结果表明,构建模型与实例结果吻合度较高。所得结果可为相关部门采取应急措施缓解内涝导致的交通堵塞提供参考。  相似文献   

11.
城市内涝灾害给城市居民生命、财产安全造成了严重威胁。以长春市南关区为例,以二维非定恒定流为基本骨架,以不规则网格概化地形,用一维非恒定流描述排水管网,建立了城市暴雨内涝数值模型。该模型包含产流模型、汇流模型、排水模型及内涝模型。以30 a,50 a,100 a一遇的暴雨情景,对居民出行困难度进行了评价。验证结果表明,构建模型与实例结果吻合度较高。所得结果可为相关部门采取应急措施缓解内涝导致的交通堵塞提供参考。  相似文献   

12.
随着城市的发展,基于传统的水力设计计算、运行管理的排水系统存在诸多问题,着重阐述了排水管网水动力学模型及其研究应用现状,认为采用排水管网水动力学模型进行动态模拟分析是有效解决问题的重要非工程措施.  相似文献   

13.
针对平原城市高度建成区暴雨引发的城市内涝问题,以珠三角城市东莞市为例,基于MIKE FLOOD平台,利用MIKE URBAN、 MIKE 11和MIKE 21构建了城市内涝耦合模型。同时,结合历史暴雨事件提出一种长历时暴雨设计雨型,分析50 a一遇设计降雨重现期下东莞市中心城区暴雨内涝过程和积水特征,提出改善“大排水系统”排水能力的内涝治理措施并评估其实施效果。结果表明:东莞市中心城区内涝的主要原因为河道水流顶托及道路排水不畅,河道拓宽整治结合道路竖向调整可使管网溢流程度降低45%,内涝淹没面积减小73%。提高研究区内河、道路排水通道等“大排水系统”的排水能力对改善研究区域的内涝现状效果显著。研究成果可为平原城市高度建成区的内涝治理提供技术支撑。  相似文献   

14.
针对日益突出的城市内涝问题,为了减少内涝灾害的发生、达到防洪排涝的目的,以成都市某小区为例,基于对小区排水管网的概化处理,雨量分配利用芝加哥雨型,应用MIKE URBAN软件模拟小区排水管网在不同降雨强度下承压运行情况及管点溢流情况,并通过设置小型调蓄池和扩增管径两种途径改善城市内涝状况。结果表明:改造后管网设计重现期由2年一遇提高到10年一遇,管段承压状况得到明显改善。在遭遇10年一遇降雨时,管道峰值流量明显降低,典型管道削峰率达62. 5%,管网过水能力大幅度增加。在今后排水系统改造中,应当使城市管网与雨水调蓄池等海绵措施相结合,实现削减峰值雨量,从源头上防止内涝的发生。该模型具有建模简单、运算精确的特点,对城市防洪排涝相关研究有较好的借鉴意义。  相似文献   

15.
随着城市化的不断推进,极端水文事件如汛期强降雨、迅猛的暴雨导致的快速涝情,以及涝旱交替等现象,其发生频率和强度正迅速增加。本文以北京市某地区为例,在此基础上建立了城市一维雨水管网模型和城市二维地表淹没模型,进而制作城市内涝淹没图。通过分析内涝的影响因素并进行风险评估,深入了解内涝现象。研究结果显示,北京市的排水情况不容乐观,绝大多数排水管段的排水能力在10 a内仅能满足一次。这一状况不仅涉及管段数量,还包括管线长度,超过90%的管段排水能力均未达到10 a一遇的水平,约50%和40%的管段聚焦在1 a一遇和2 a一遇的降雨情景;伴随着降雨重现期的延长,峰值流量出现的时间变化较小。积水的起始时间和积水持续时间的演变趋势基本相同,在降雨重现期从1 a一遇到3 a一遇时表现出较大的变化,而在3 a一遇到100 a一遇时,变化渐趋稳定;随着降雨重现期的延长,积水深度和积水面积的变化强烈。在重现期为100 a一遇的情况下,积水面积占了总面积的45.22%,而积水深度则高达1.25 m。  相似文献   

16.
针对城市给水管线不同管段在灾后对于管网整体可靠度影响的差异性,为了能够较好地评价不同管段对管网系统连接可靠度的贡献,引入失效概率重要度和关键重要度,建立了基于历史经验方法的管网可靠度及管线失效概率重要度、关键重要度计算模型。实例计算结果表明,该模型计算的管网连接可靠度结果与其他文献方法的计算结果基本一致,验证了模型的合理性、有效性。进而应用该模型计算出各段管线的失效概率重要度、关键重要度,对管线防灾等级划分,给出了管网分割方法与管网震后恢复策略。研究结果为编制给水管网抗震防灾规划、震后管网恢复计划及制定出相应的抗灾应急措施提供依据。  相似文献   

17.
对江西省南昌市青山湖区的排水管网、道路和河道水系等进行了概化,采用SWMM软件对重现期为1,2,5,10 a一遇和50 a一遇的暴雨排水情形进行了模拟,得到了积水深度、积水面积和积水时间等因素,在衡量内涝积水严重程度时需综合考虑。结果表明,排水管网淹没出流时的顶托作用是导致内涝积水的重要原因。对于该区域,城市排水管网半淹没出流和自由出流对排水能力影响不大,但淹没出流导致管网排水能力急剧下降。  相似文献   

18.
【目的】为了明晰内涝致灾机理,精准识别影响内涝的关键因素,诊断积水内涝原因并提出治理措施及优化比选方案,【方法】选取北京市典型积水点金安桥为研究对象,基于InfoWorks ICM构建精细化洪涝模型开展内涝模拟分析。【结果】结果显示:在1 a、3 a、5 a、10 a四种设计暴雨情景下,模拟得到金安桥最大积水深度分别为0.903 m、1.317 m、1.528 m、1.660 m,在10 a一遇设计暴雨情景下桥区积水将漫溢至金安桥站地铁口,出现地铁倒灌风险。【结论】基于模型模拟诊断分析得出,金安桥片区内涝原因主要为管网排水能力不足,局部地形地势低以及规划建设因素导致。模拟分析了管网提标、地形抬填、规划建设调蓄泵站及排水渠等四种内涝治理措施,治理效果依次为:地形抬填>规划建设排水渠>管网提标>规划建设调蓄泵站,设置了4种联用组合方案模拟内涝改善效果,其中方案四(管网提标+设置调蓄泵站+设置排水渠)效果最佳,区域排水能力达10 a一遇。研究结果可为精细化、系统化治理城市内涝问题提供技术支撑。  相似文献   

19.
排水设施普查是北京市第一次水务普查的重要普查专项,排水管网调查是排水设施普查专项的重要内容。通过对排水管网普查成果的统计分析,结合日常运行管理存在的问题,提出了加强排水管网的运行管理,统筹考虑新建排水管网等措施,为提高排水管网服务保障能力和解决城市排涝问题提供技术支持。  相似文献   

20.
《人民黄河》2021,(1):53-60
为了量化海绵措施对城市防洪排涝的影响,以典型城市区域万泉河流域为例,基于InfoWorks ICM构建综合洪涝模型,参考北京市地方标准,开展海绵措施规划与流域现状下垫面下不同重现期设计暴雨多情景对比分析。结果表明:海绵措施能提高雨水管网排水能力,使得高于10 a一遇标准的管长增加7.59%,管段数增加8.98%;同时增强河道行洪能力,在10 a一遇至50 a一遇暴雨重现期下,峰值流量削减19.72%~39.36%,径流总量削减26.45%~37.88%,沿线入清河口最高水位平均下降0.35 m;还能缓解流域内涝积水,在5 a一遇至50 a一遇设计暴雨情景下,最大积水深度减小0.04~0.29 m,积水总面积减少14.89~45.13 hm~2,积水总量减少30 399.97~110 114.24 m~3。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号