首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A monoclonal antibody, CML-1, raised against carrot (Daucus carota L.) nuclear-matrix proteins selectively labeled the nuclear periphery of carrot protoplasts when visualized by confocal and electron microscopy. To identify the constituent proteins of higher plant cells structurally homologous to the vertebrate nuclear lamina, we cloned overlapping cDNAs partially encoding a CML-1-recognized protein and determined the entire sequence including the open reading frame. When the deduced amino acid sequence was compared with other known protein sequences contained in major databases, no protein was found to show high sequence identity across the whole region of the protein, while the partial sequence showed strong similarities with myosin, tropomyosin, and some intermediate filament proteins. The protein, designated NMCP1, had an estimated molecular mass of 133.6 kDa and showed three characteristic domains. The central domain contains long alpha-helices exhibiting heptad repeats of apolar residues, demonstrating structural similarity to that of filament-forming proteins. The terminal domains are predominantly nonhelical and contain potential sequence motifs for nuclear localization signals. NMCP1 has many recognition motifs for different types of protein kinases, including cdc2 kinase and PKC. These results suggest that NMCP1 protein forms coiled-coil filaments and is a constituent of the peripheral architecture of the higher plant cell nucleus.  相似文献   

2.
As the structural database continues to expand, new methods are required to analyse and compare protein structures. Whereas the recognition, comparison, and classification of folds is now more or less a solved problem, tools for the study of constellations of small numbers of residues are few and far between. In this paper, two programs are described for the analysis of spatial motifs in protein structures. The first, SPASM, can be used to find the occurrence of a motif consisting of arbitrary main-chain and/or side-chains in a database of protein structures. The program also has a unique capability to carry out "fuzzy pattern matching" with relaxed requirements on the types of some or all of the matching residues. The second program, RIGOR, scans a single protein structure for the occurrence of any of a set of pre-defined motifs from a database. In one application, spatial motif recognition combined with profile analysis enabled the assignment of the structural and functional class of an uncharacterised hypothetical protein in the sequence database. In another application, the occurrence of short left-handed helical segments in protein structures was investigated, and such segments were found to be fairly common. Potential applications of the techniques presented here lie in the analysis of (newly determined) structures, in comparative structural analysis, in the design and engineering of novel functional sites, and in the prediction of structure and function of uncharacterised proteins.  相似文献   

3.
Telomeres consist of tandem arrays of short G-rich sequence motifs packaged by specific DNA binding proteins. In humans the double-stranded telomeric TTAGGG repeats are specifically bound by TRF1 and TRF2. Although telomere binding proteins from evolutionarily distant species are not sequence homologues, they share a Myb-like DNA binding motif. Here we have used gel retardation, primer extension and DNase I footprinting analyses to define the binding site of the isolated Myb-like domain of TRF1 and present a three-dimensional model for its interaction with human telomeric DNA. Our results suggest that the Myb-like domain of TRF1 recognizes a binding site centred on the sequence GGGTTA and that its DNA binding mode is similar to that of the homeodomain-like motifs of the yeast telomere binding protein RAP1. The implications of these findings for recognition of telomeric DNA in general are discussed.  相似文献   

4.
Two groups of HMG box proteins are distinguished. Proteins in the first group contain multiple HMG boxes, are non-sequence-specific, and recognize structural features as found in cruciform DNA and cross-over DNA. The abundant chromosomal protein HMG-1 belongs to this subgroup. Proteins in the second group carry a single HMG box with affinity for the minor groove of the heptamer motif AACAAAG or variations thereof. A solution structure for the non-sequence-specific C-terminal HMG box of HMG-1 has recently been proposed. Now, we report the solution structure of the sequence-specific HMG-box of the SRY-related protein Sox-4. NMR analysis demonstrated the presence of three alpha-helices (Val10-Gln22, Glu30-Leu41 and Phe50-Tyr65) connected by loop regions (Ser23-Ala49 and Leu42-Pro49). Helices I and II are positioned in an antiparallel mode and form one arm of the HMG box. Helix III is less rigid, makes an average angle of about 90 degrees with helices I and II, and constitutes the other arm of the molecule. As in HMG1B, the overall structure of the Sox-4 HMG box is L-shaped and is maintained by a cluster of conserved, mainly aromatic residues.  相似文献   

5.
The structure of the domain from simian virus 40 (SV40) large T-antigen that binds to the SV40 origin of DNA replication (T-ag-OBD131-260) has been determined by nuclear magnetic resonance spectroscopy. The overall fold, consisting of a central five-stranded antiparallel beta-sheet flanked by two alpha-helices on one side and one alpha-helix and one 3(10)-helix on the other, is a new one. Previous mutational analyses have identified two elements, termed A (approximately 152-155) and B2 (203-207), as essential for origin-specific recognition. These elements form two closely juxtaposed loops that define a continuous surface on the protein. The addition of a duplex oligonucleotide containing the origin recognition pentanucleotide GAGGC induces chemical shift changes and slows amide proton exchange in resonances from this region, indicating that this surface directly contacts the DNA.  相似文献   

6.
The AT-hook is a small DNA-binding protein motif which was first described in the high mobility group non-histone chromosomal protein HMG-I(Y). Since its discovery, this motif has been observed in other DNA-binding proteins from a wide range of organisms. Using pattern searches and position-dependent matrices, we have extracted the AT-hook motifs present in a non-redundant protein sequence database. We have classified these motifs into three types according to their sequence similarity and have found that they are prevalent in many eukaryotic nuclear proteins in single or multiple copies. Furthermore, AT-hook motifs are frequently associated with known functional domains seen in chromatin proteins and in DNA-binding proteins (e.g. histone folds, homeodomains and zinc fingers). In general, it appears that the AT-hook motif is an auxiliary protein motif cooperating with other DNA-binding activities and facilitating changes in the structure of the DNA either as a polypeptide on its own [e.g. HMG-I(Y)] or as part of a multidomain protein [e.g. Swi2p in Saccharomyces cerevisiae or HRX (ALL-1) in Homo sapiens]. It is most interesting that this motif seems to be quite specific to known or predicted chromosomal/DNA-binding proteins, suggesting that it may act as a versatile minor groove tether.  相似文献   

7.
8.
Intestinal fatty acid-binding protein (I-FABP) is a cytosolic 15.1-kDa protein that appears to function in the intracellular transport and metabolic trafficking of fatty acids. It binds a single molecule of long-chain fatty acid in an enclosed cavity surrounded by two five-stranded antiparallel beta-sheets and a helix-turn-helix domain. To investigate the role of the helical domain, we engineered a variant of I-FABP by deleting 17 contiguous residues and inserting a Ser-Gly linker (Kim K et al., 1996, Biochemistry 35:7553-7558). This variant, termed delta17-SG, was remarkably stable, exhibited a high beta-sheet content and was able to bind fatty acids with some features characteristic of the wild-type protein. In the present study, we determined the structure of the delta17-SG/palmitate complex at atomic resolution using triple-resonance 3D NMR methods. Sequence-specific 1H, 13C, and 15N resonance assignments were established at pH 7.2 and 25 degrees C and used to define the consensus 1H/13C chemical shift-derived secondary structure. Subsequently, an iterative protocol was used to identify 2,544 NOE-derived interproton distance restraints and to calculate its tertiary structure using a unique distance geometry/simulated annealing algorithm. In spite of the sizable deletion, the delta17-SG structure exhibits a backbone conformation that is nearly superimposable with the beta-sheet domain of the wild-type protein. The selective deletion of the alpha-helical domain creates a very large opening that connects the interior ligand-binding cavity with exterior solvent. Unlike wild-type I-FABP, fatty acid dissociation from delta17-SG is structurally and kinetically unimpeded, and a protein conformational transition is not required. The delta17-SG variant of I-FABP is the only wild-type or engineered member of the intracellular lipid-binding protein family whose structure lacks alpha-helices. Thus, delta17-SG I-FABP constitutes a unique model system for investigating the role of the helical domain in ligand-protein recognition, protein stability and folding, lipid transfer mechanisms, and cellular function.  相似文献   

9.
10.
The extracellular loop of P2X channel proteins contains a sequence stretch (positions 170-330) that exhibits similarities with the catalytic domains of class II aminoacyl-tRNA synthetases as shown by secondary structure predictions and sequence alignments. The arrangement of several conserved cysteines (positions 110-170) shows similarities with metal binding regions of metallothioneins and zinc finger motifs. Thus, for the extracellular part of P2X channel proteins a metal binding domain and an antiparallel six-stranded beta-pleated sheet containing the ATP binding site are very probable. The putative channel forming H5 part (positions 320-340) shows similarities with the enzyme motif 1 responsible for aggregation of subunits to the holoenzyme.  相似文献   

11.
BACKGROUND: Integrase mediates a crucial step in the life cycle of the human immunodeficiency virus (HIV). The enzyme cleaves the viral DNA ends in a sequence-dependent manner and couples the newly generated hydroxyl groups to phosphates in the target DNA. Three domains have been identified in HIV integrase: an amino-terminal domain, a central catalytic core and a carboxy-terminal DNA-binding domain. The amino-terminal region is the only domain with unknown structure thus far. This domain, which is known to bind zinc, contains a HHCC motif that is conserved in retroviral integrases. Although the exact function of this domain is unknown, it is required for cleavage and integration. RESULTS: The three-dimensional structure of the amino-terminal domain of HIV-2 integrase has been determined using two-dimensional and three-dimensional nuclear magnetic resonance data. We obtained 20 final structures, calculated using 693 nuclear Overhauser effects, which display a backbone root-mean square deviation versus the average of 0.25 A for the well defined region. The structure consists of three alpha helices and a helical turn. The zinc is coordinated with His 12 via the N epsilon 2 atom, with His16 via the N delta 1 atom and with the sulfur atoms of Cys40 and Cys43. The alpha helices form a three-helix bundle that is stabilized by this zinc-binding unit. The helical arrangement is similar to that found in the DNA-binding domains of the trp repressor, the prd paired domain and Tc3A transposase. CONCLUSION: The amino-terminal domain of HIV-2 integrase has a remarkable hybrid structure combining features of a three-helix bundle fold with a zinc-binding HHCC motif. This structure shows no similarity with any of the known zinc-finger structures. The strictly conserved residues of the HHCC motif of retroviral integrases are involved in metal coordination, whereas many other well conserved hydrophobic residues are part of the protein core.  相似文献   

12.
Structural maintenance of chromosomes (SMC) proteins function in chromosome condensation and several other aspects of DNA processing. They are large proteins characterized by an NH2-terminal nucleotide triphosphate (NTP)-binding domain, two long segments of coiled coil separated by a hinge, and a COOH-terminal domain. Here, we have visualized by EM the SMC protein from Bacillus subtilis (BsSMC) and MukB from Escherichia coli, which we argue is a divergent SMC protein. Both BsSMC and MukB show two thin rods with globular domains at the ends emerging from the hinge. The hinge appears to be quite flexible: the arms can open up to 180 degrees, separating the terminal domains by 100 nm, or close to near 0 degrees, bringing the terminal globular domains together. A surprising observation is that the approximately 300-amino acid-long coiled coils are in an antiparallel arrangement. Known coiled coils are almost all parallel, and the longest antiparallel coiled coils known previously are 35-45 amino acids long. This antiparallel arrangement produces a symmetrical molecule with both an NH2- and a COOH-terminal domain at each end. The SMC molecule therefore has two complete and identical functional domains at the ends of the long arms. The bifunctional symmetry and a possible scissoring action at the hinge should provide unique biomechanical properties to the SMC proteins.  相似文献   

13.
14.
MerR, the metalloregulatory protein of the mercury-resistance operon (mer) has unusually high affinity and specificity for ionic mercury, Hg(II). Prior genetic and biochemical evidence suggested that the protein has a structure consisting of an N-terminal DNA binding domain, a C-terminal Hg(II)-binding domain, and an intervening region involved with communication between these two domains. We have characterized a series of MerR deletion mutants and found that as little as 30% of the protein (residues 80-128) forms a stable dimer and retains high affinity for Hg(II). Biophysical measures indicate that this minimal Hg(II)-binding domain assumes the structural characteristics of the wild-type full-length protein both in the Hg(II) center itself and in an immediately adjacent helical protein domain. Our observations are consistent with the core Hg(II)-binding domain of the MerR dimer being constituted by a pair of antiparallel helices (possibly in a coiled-coil conformation) comprised of residues cysteine 82 through cysteine 117 from each monomer followed by a flexible loop through residue cysteine 126. These antiparallel helices would have a potential Hg(II)-binding site at each end. However, just as in the full-length protein, only one of these potential binding sites in the deleted proteins actually binds Hg(II).  相似文献   

15.
16.
Guanine nucleotide exchange factors in the Dbl family activate Rho GTPases by accelerating dissociation of bound GDP, promoting acquisition of the GTP-bound state. Dbl proteins possess a approximately 200 residue catalytic Dbl-homology (DH) domain, that is arranged in tandem with a C-terminal pleckstrin homology (PH) domain in nearly all cases. Here we report the solution structure of the DH domain of human PAK-interacting exchange protein (betaPIX). The domain is composed of 11 alpha-helices that form a flattened, elongated bundle. The structure explains a large body of mutagenesis data, which, along with sequence comparisons, identify the GTPase interaction site as a surface formed by three conserved helices near the center of one face of the domain. Proximity of the site to the DH C-terminus suggests a means by which PH-ligand interactions may be coupled to DH-GTPase interactions to regulate signaling through the Dbl proteins in vivo.  相似文献   

17.
The solution NMR structure of the RNA-binding domain from influenza virus non-structural protein 1 exhibits a novel dimeric six-helical protein fold. Distributions of basic residues and conserved salt bridges of dimeric NS1(1-73) suggest that the face containing antiparallel helices 2 and 2' forms a novel arginine-rich nucleic acid binding motif.  相似文献   

18.
The carboxyl-terminal domain of the gamma134.5 protein of the herpes simplex virus 1 binds to protein phosphatase 1alpha (PP1) and is required to prevent the shut-off of protein synthesis resulting from phosphorylation of the alpha subunit of eIF-2 by the double-stranded RNA-activated protein kinase. The corresponding domain of the conserved GADD34 protein homologous to gamma134.5 functionally substitutes for gamma134.5. This report shows that gamma134.5 and PP1 form a complex in the infected cells, that fractions containing this complex specifically dephosphorylate eIF-2alpha, and that both gamma134.5 and GADD34 proteins contain the amino acid sequence motif common to subunits of PP1 that is required for binding to the PP1 catalytic subunit. An oligopeptide containing this motif competes with gamma134.5 for binding to PP1. Substitution of Val193 and Phe195 in the PP1-binding motif abolished activity. These results suggest that the carboxyl-terminal domain of gamma134.5 protein has the structural and functional attributes of a subunit of PP1 specific for eIF-2alpha, that it has evolved to preclude shut-off of protein synthesis, and that GADD34 may have a similar function.  相似文献   

19.
NMR structure and mutagenesis of the FADD (Mort1) death-effector domain   总被引:1,自引:0,他引:1  
When activated, membrane-bound receptors for Fas and tumour-necrosis factor initiate programmed cell death by recruiting the death domain of the adaptor protein FADD to the membrane. FADD then activates caspase 8 (also known as FLICE or MACH) through an interaction between the death-effector domains of FADD and caspase 8. This ultimately leads to the apoptotic response. Death-effector domains and homologous protein modules known as caspase-recruitment domains have been found in several proteins and are important regulators of caspase (FLICE) activity and of apoptosis. Here we describe the solution structure of a soluble, biologically active mutant of the FADD death-effector domain. The structure consists of six antiparallel, amphipathic alpha-helices and resembles the overall fold of the death domains of Fas and p75. Despite this structural similarity, mutations that inhibit protein-protein interactions involving the Fas death domain have no effect when introduced into the FADD death-effector domain. Instead, a hydrophobic region of the FADD death-effector domain that is not present in the death domains is vital for binding to FLICE and for apoptotic activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号