首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
马成伟  王金印  牛理国  李烁  陈龙 《炼铁》2020,39(1):28-31
对首钢京唐1号高炉炉缸侧壁温度升高后的护炉措施进行了总结。1号高炉炉役生产至10年之际,频繁发生局部炉缸炉衬热电偶温度升高的问题(TE31323上升至609℃),严重威胁安全生产。通过采取加钛矿护炉、强化冷却、调整布料制度、控制入炉碱金属、加强原燃料的管理等措施,炉缸侧壁高温点得以控制,保证了高炉安全生产,各项生产指标良好。  相似文献   

2.
曹锋 《中国冶金》2013,23(1):36-38
高炉炉芯温度是炉缸活跃程度的重要表征。炉芯传热可作为一维稳态传热来处理,通过建立首钢京唐1号高炉炉芯传热的计算方程,计算绘出了炉芯温度-炉缸温度、炉芯温度-陶瓷垫厚度的关系线,确定了现阶段首钢京唐1#高炉合适的炉芯温度为310~380℃,分析得出炉芯温度低时,炉缸工况差,炉芯温度和铁水温度的相关性弱。  相似文献   

3.
徐万仁  朱仁良  张龙来  张永忠 《钢铁》2007,42(1):8-11,16
通过分析宝钢2号高炉炉缸侧壁温度屡次升高的原因和操作实践的总结,证实铁水环流加剧是大型高炉炉缸侧壁侵蚀的主要原因.通过在正常生产中实施活跃炉缸操作、强化中心气流、控制炉底温度下降和加强铁口维护等操作方法,2号高炉成功地解决了炉缸侧壁侵蚀难题,效果显著.同时表明,加钛矿对维护炉底作用显著,而对控制侧壁侵蚀效果不大.  相似文献   

4.
张建 《钢铁》2019,54(9):39-43
 高炉炉缸侧壁温度升高是多数钢铁企业正在面临的严峻课题,加钛矿护炉是目前广泛使用的技术手段。为了达到预期的护炉效果、避免钛矿的浪费,以及避免过量钛矿对炉况的消极影响,根据首钢京唐公司两座高炉的炉缸侧壁温度变化数据,测量护炉铁水中的钛含量。通过线性回归分析,细化了相应铁水中的硅质量分数及钛负荷范围。结果表明,首钢京唐1号高炉铁水中钛质量分数应控制在0.055%~0.080%,硅质量分数控制在0.20%~0.35%,钛负荷控制在(6±0.5) kg/t;2号高炉的铁水中钛质量分数应控制在0.08%~0.13%,硅质量分数控制在0.30%~0.45%,钛负荷控制在(7±0.5) kg/t。生产中尽量维持稳定的炉温,减少波动,有利于保护炉缸内衬。此外,也需保证死料柱的活性,严格管控炉前作业,选择合理的冷却制度。  相似文献   

5.
王喜元  陈川  宋志辉  郭宏烈 《炼铁》2019,38(5):20-24
针对首钢京唐2号高炉炉缸侧壁温度异常升现象(最高达到799℃),通过采取控制冶炼强度、加钛矿护炉、优化炉前操作制度、提高炉缸活跃度、优化煤气流分布等一系列护炉措施,使炉缸温度逐步下降,并长期稳定在100℃以下。认为护炉是一个系统工程,各个措施不是孤立的,而应相互配合,才能取得既护好炉、又有一定产量水平和技术指标的综合效果。  相似文献   

6.
杜屏  雷鸣  周夏芝  周海华  马恒保 《炼铁》2021,40(6):21-24
针对沙钢3号高炉炉缸侧壁温度持续升高现象,提出了经济高效低钛护炉方案。经济高效低钛护炉,就是以析出石墨碳为核心,提高铁水[C]含量,降低铁水中碳不饱和度,改善炉缸活性,促进炉缸石墨碳析出。3号高炉低钛护炉期间,逐步减少钒钛矿使用量,铁水[Ti]降低至0.08%以下,炉缸侧壁炭砖温度基本处于400℃以下。同时,高炉日产量达到6500t/d以上,燃料比和焦比分别降低至519kg/t和375kg/t,大幅降低了燃料消耗,实现经济、高效、低钛护炉的目标。  相似文献   

7.
为了进一步明确柳钢4号高炉炉缸侧壁温度升高原因和炉缸侵蚀状态,通过对柳钢4号高炉炉缸结构设计、原燃料质量和生产参数进行调研分析,结合炉缸侧壁温度的变化规律和炭砖残厚的计算,分析了炉缸侧壁温度升高原因及侵蚀状态。结果表明,4号高炉炉缸冷却能力和炉缸侧壁温度监测仍有待加强;除侧壁炭砖侵蚀外,原燃料质量波动和冶炼强度增大等也是炉缸侧壁温度上升的重要原因;炉缸侵蚀最为严重的部位在铁口中心线以下1.9 m的位置,表现为“象脚”侵蚀。  相似文献   

8.
对济钢2号1 750m~3高炉炉缸侧壁温度异常升高的原因及处理进行了总结分析。认为冷却壁大量破损漏水、渣铁环流是导致炉缸侧壁温度升高的主要原因,通过采用炉缸灌浆、风口喂线与钒钛矿护炉、优化操作制度等一系列措施,取得明显成效。  相似文献   

9.
莱钢针对2#高炉(1 880m3)炉缸侧壁温度出现异常升高的问题,采取控制冶炼强度、配钛球、完善护炉设施等措施,炉缸侧壁温度得到有效控制,高炉各项技术指标未出现下滑,护炉绩效显著。  相似文献   

10.
文章对包钢5~#高炉炉缸侧壁温度升高的原因进行了分析并总结了治理经验,通过实施护炉措施,配加含钛炉料进行护炉,5~#高炉炉缸侧壁温度升高得到了有效的控制,将炉缸侧壁温度控制在安全范围之内,保证了安全生产和高炉长寿。  相似文献   

11.
为探究沙钢3号高炉炉缸侧壁温度升高原因,对沙钢3号高炉开炉以来的热电偶温度数据及热流强度变化趋势进行统计,并计算了炭砖的残余厚度。结合3号高炉的死铁层深度及冷却系统设计等参数,对炉缸侧壁温度升高的原因进行了解析。结果表明,沙钢3号高炉炭砖侵蚀薄弱区域处于铁口下方1~2 m,最薄位置处于西铁口,炭砖残余厚度约为517 mm。结合高炉炉缸设计发现,其炭砖侵蚀严重区域处于炉缸冷却壁薄弱位置,且与炉缸死料柱角部位置有关。研究相关结果可为国内大中型高炉设计提供相关指导。  相似文献   

12.
卢瑜  杜屏  常李  周大勇  张国良 《中国冶金》2006,32(10):82-88
沙钢2号高炉经过炉役初期2年多的强化生产后,面临炉缸侧壁温度升高和技术经济指标逐年下滑的难题。结合理论公式和实际生产经验,分析了料柱透气性的影响因素以及炉缸活性的影响因素,提出了钛矿分级护炉的措施。实践表明,通过稳定焦炭用料结构、稳定焦炭质量、加强槽位管理、加强筛分管理来把好原料关,同时提高顶压降低煤气流速,可以提高料柱的透气性,为鼓风动能的提高创造条件;通过缩小风口面积、增加风量可以提高鼓风动能;通过炉渣镁铝比的精细化控制可以改善炉渣黏度,从而提高炉缸活性。同时,适当结合钛矿分级入炉,实现了高炉炉役后期炉缸侧壁温度的下降和技术指标的回升。  相似文献   

13.
对泰钢1号高炉成功实施取消中心加焦布料模式调整进行总结。重点对取消中心加焦的具体方法进行阐述,分析认为成功取消中心加焦操作,实施前确保炉缸良好的活跃状态是基础,原燃料质量的改善是保障,上、下部操作制度的优化调整是实现煤气流顺利转换的关键;通过前期制定缜密、详细的方案,实施过程中密切跟踪煤气流变化,及时修订操作参数,一次性成功实现了取消中心加焦操作,未出现滑尺、塌料、悬料、渣皮大量脱落等炉况波动。结果表明,取消中心加焦后,炉缸死焦堆变小,对改善铁水环流降低炉缸侧壁温度起到了重要作用;同时高炉煤气利用率提高,燃料比降低。  相似文献   

14.
高炉炉缸铁水流场数值模拟   总被引:1,自引:0,他引:1  
铁水环流是造成炉缸"蒜头状"侵蚀的主要原因,而导致铁水环流行程主要是由于炉缸内的死料柱引起的。为此,以流体力学有关理论为基础,建立了炉缸炉底三维流体数学模型,应用FLUENT软件,研究了高炉炉缸中不同死料柱位置、状态及出铁口尺寸对炉缸内铁水流动的影响。结果表明:死料柱有较小的浮起时造成炉底铁水流量较大对炉底产生较强的侵蚀。当中心死料柱尺寸大时自由铁水区的铁水流速较快,反之较慢。当出铁口直径增大时,铁水的质量流量增大,炉缸底部的铁水环流明显增大。  相似文献   

15.
代兵  梁科  王学军  李鑫  郭玉伟 《中国冶金》2015,25(12):45-49
在对传统炉缸活性计算模型研究分析的基础上,针对本钢新1号高炉等国内大型高炉操作惯性大的特点,提出了两个炉缸活性量化计算模型,即炉缸工作活跃指数优化模型和炉缸活跃性指数优化模型。通过采集与处理本钢新1号高炉生产数据以及编程技术完成了模型的离线计算,并成功应用于本钢新1号高炉的生产中,实现了对炉缸活性的量化计算。实践证明,模型的计算结果可以真实地反映炉缸活性状态,有效地帮助高炉操作者及时把握炉缸活性,当炉缸活性下降或失常时,可以在第一时间发现并尽早进行操作干预,将炉缸不活抑制在萌芽状态,及时地避免了因炉缸活性恶化所造成的一切损失,从而在维护炉缸活性、保持高炉长期稳定顺行等方面发挥重要作用。  相似文献   

16.
合理的炉缸冷却制度是保证高炉长寿的重要基础,从传热学的角度上对高炉冷却系统进行了深入探讨,分析了高炉炉缸传热数学模型的局限性,根据一维径向传热模型计算表明,增大冷却水流量可降低冷却水温差,但对增强炉缸冷却强度效果甚微。分析了冷却水对高炉炉缸的重要作用在于提高临界热流强度,防止出现核态沸腾和膜态沸腾。在炉缸结构一定的条件下,炉缸导出的热量主要取决于铁水的流动状态及铁水温度,最后给出炉缸砖衬出现缝隙的判定条件。  相似文献   

17.
高炉炉缸活跃性评价的新认识   总被引:1,自引:0,他引:1  
陈辉  吴胜利  余晓波 《钢铁》2007,42(10):12-16,23
炉缸工作状态对高炉生产有重要影响.炉缸工作状态活跃与否主要受焦炭的填充状况及液态渣铁流动性的影响.焦炭的填充状态决定炉缸内的"透液通道",渣铁的流动性影响渣铁流入和排出炉缸的顺畅程度.高风氧量操作下,随富氧率增加,渣铁流入和排出阻力系数减小.以流入和排出阻力系数为基础,结合生产数据,提出了"炉缸活跃性指数"新概念,并能较好地评价和判断炉缸状态.  相似文献   

18.
从炉缸结构设计关键要素的分析着手,从侵蚀机制、炉缸传热体系的建立到炉缸的设计理念对炉缸的长寿 进行了全面的论述。指出高炉长寿的关键控制环节为:设计、施工、烘炉、开炉节奏、操作稳定、维护管理。在合适 的炉缸冷却系统和结构配置条件下,有效杜绝和防止气隙是炉缸长寿的关键。设计要有完善的防止气隙的措施; 安装中要严格控制每一个环节;采用热水烘炉提高炉墙温度,促进水分蒸发;控制高炉开炉进程,给予新高炉一个 磨合期,保证炉缸的传热体系可靠、有效,以实现炉缸的无气隙化操作。无论炉缸耐材采用何种配置结构和采用何 种冷却系统,都必须以建立良好的传热体系为前提,只有尽快形成稳定的渣铁壳,才能实现炉缸的长寿。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号