首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The effects of Li~+ co-doping concentration on the structure, upconversion luminescence and temperature sensing behavior of Er~(3+):La_2O_3 phosphors were investigated. X-ray diffraction and scanning electron microscopy observations reveal that Li~+ ion co-doping can change the lattice parameter of La_2O_3 host and increase the particle size of the samples. The optical investigation shows that co-doping of Li~+ ions can enhance the upconversion emission of Er~(3+) ions in La_2O_3 matrix effectively. Most importantly, the temperature sensing sensitivity of the samples is found to be dependent on Li~+ co-doping concentration,when the emission intensity ratio of the(~2H_(11/2)→~4 I_(15/2)) and(~4 S_(3/2)→~4 I_(15/2)) transitions of Er~(3+) is chosen as the thermometric index. Both of the optimum upconversion luminescence and temperature sensing sensitivity are obtained for 7 mol% Li~+ co-doped sample. When the Li~+ concentration is beyond 7 mol%,both the quenching in upconversion intensity and the degradation of temperature sensitivity are observed, which may be due to the serious distortion in local crystal field around Er~(3+) ions caused by the excess Li~+ ions.  相似文献   

2.
Er3+-Tm3+-Yb3+ tri-doped BaMoO4 phosphors were synthesized by co-precipitation technique and characterized by X-ray diffraction analysis, absorption study and field emission scanning electron microscopy analysis. Upconversion as well as downconversion luminescence studies were performed by using near infrared (980 nm) and ultraviolet (380 nm) excitations. Energy level diagram, pump power dependence and colour coordinate study were utilized to describe the multicolor upconversion emission properties. Under single 980 nm diode laser excitation the dual mode sensing behaviour is realized via Stark sublevels and thermally coupled energy levels of the Tm3+ and Er3+ ions in the prepared tri-doped phosphors. A comparative fluorescence intensity ratio analysis for integrated emission intensities arising from the Stark sublevels {1G4(a) and 1G4(b)} and thermally coupled energy levels {2H11/2 and 4S3/2} of the Tm3+ and Er3+ ions, respectively was carried out in the prepared tri-doped BaMoO4 phosphors. The maximum sensitivity for thermally coupled energy levels of the Er3+ and Stark sublevels of the Tm3+ ion was reported. The developed phosphors could be useful in the display devices and optical thermometric applications.  相似文献   

3.
In this article upconversion luminescence of silver nanoparticles(AgNPs) coated NaYF_4:Er~(3+)/Yb~(3+)phosphor nano-particles was investigated.The prepared samples were characterized through various techniques.The surface plasmon band is observed for prepared AgNPs by analyzing UV-vis measurements and is used to enhance the upconversion emission.From the upconversion measurement the emission bands are observed at 522,546,and 656 nm corresponding to the ~2 H_(11/2)→ 4~1_(15/2),~4 S_(3/2)→~4 I_(15/2)and ~4 F_(9/2)→~4 I_(15/2) levels,respectively.The upconversion emission intensity of the above bands is found to enhance for sample containing 1 mmol AgNPs.Decay time of ~4 S_(3/2) and 4~F_(9/2) levels is found to decrease on coating of AgNPs and hence intensity enhancement is assumed due to the surface plasmon resonance(SPR) effect.  相似文献   

4.
A series of Ln3+ (Ln3+ = Er3+/Dy3+) ions doped Na2NbAlO5 (NNAO) phosphors were synthesized by solid-state method. The Er3+ and Dy3+ ions doped phosphors were characterized by XRD, photoluminescence (PL) and decay profiles. The Ln3+-doped samples are consistent with the pure NNAO phase which is analyzed by the X-ray diffraction result. The PL graphs show that the intensity of luminescence increases with the increasing doping concentrations up to their critical certain values and then decreases at higher concentrations due to the concentration quenching effect of Er3+/Dy3+ ions. The energy level diagrams containing the positions of 4f and 5d energy levels of Er3+ and Dy3+ ions have been established and studied. In addition, under the ultraviolet light, the prepared NNAO:xLn3+ (Ln3+ = Er3+/Dy3+) phosphors show the characteristic green (Er3+), cyan (Dy3+) emission, respectively. Under the excitation of 365 nm, the quantum efficiencies of NNAO:0.01Er3+ and NNAO:0.03Dy3+ phosphors are measured to be 61.7% and 72.2%, respectively. The obtained results indicate that the new NNAO:xLn3+ (Ln3+ = Er3+/Dy3+) phosphors are promising applications in white-light emitting diodes field.  相似文献   

5.
BiOCl crystal shows potential as efficient optical host due to its special layered structure. Here,the luminescence properties of the Er~(3+)/Sm~(3+) co-doped BiOCl phosphors as single-phase phosphors were reported. Upon near ultraviolet excitation(NUV, 380 nm corresponding the ~4 I_(15/2)→ ~4 G_(11/2) transition of Er~(3+) ions), the phosphors exhibit the efficient characteristic emissions of Er~(3+) and Sm~(3+) ions simultaneously. The energy transfer(ET) from Er~(3+) to Sm~(3+) ions in the layered crystals has been validated by the variation of emission intensities and decay lifetimes respectively, which is ascribed to be a dipoledipole interaction. By virtue of the ET behavior and increasing Sm~(3+) ion concentration, the enhancing emission intensity of Sm~(3+) and the tunability of emission color from yellowish-green(0.318, 0.420) to white(0.343, 0.347) are realized. The results of our work indicate that the Er~(3+)/Sm~(3+) co-doped BiOCI phosphor has a promising application serving as single component white emitting phosphors for NUV excited WLEDs.  相似文献   

6.
Er~(3+)/Yb~(3+) co-doped phosphate glasses(P_2O_5-Al_2O_3-BaO-BaF_2-K_2O-Er_2O_3-Yb_2O_3) with varying BaF_2 content,were prepared by a conventional melt quenching technique and their spectroscopic properties were examined through the Raman, absorption, emission and decay measurements. Raman spectra(350-1400 cm~(-1)) of the Er~(3+)/Yb~(3+) co-doped phosphate glasses with varying BaF_2 content, were recorded upon laser excitation at 785 nm. Near infrared luminescence spectra were measured in the1400-1600 nm region under 970 nm diode laser excitation and characteristic band was observed at1533 nm corresponding to ~4Ⅰ_(13/2)→~4Ⅰ_(15/2) transition of Er~(3+) ion. The decay curves for the ~4Ⅰ_(13/2) level of Er~(3+)ion, were measured and the lifetime is found to decrease from 7.94 to 7.70 ms when BaF_2 content increases from 0 to 8 mol% and then increases up to 7.83 ms with further increase in BaF_2 content(12 mol%). The emission cross-section.lifetime and figure of merit for the ~4Ⅰ_(13/2)→~4Ⅰ_(15/2) transition of Er~(3+) ion were evaluated and compared to the other host matrices. The upconversion luminescence was measured and intense red emission was observed for all the studied samples.  相似文献   

7.
Er~(3+)-modified 0.68 Pb(Mg_(1/3)Nb_(2/3))O_3-0.32 PbTiO_3(PMN-32 PT) single crystals were grown by using the flux method. The growth mechanism of the crystal and influences of Er~(3+) ions on phase structure,electrical and optical properties were investigated. Results reveal that the crystals are still pure perovskite structure with Er3+ ions doping, but lattice enlarges slightly. The coercive electric field is increased from 4.83 to 6.37 kV/cm for [100]-oriented crystals comparing to undoped PMN-32 PT single crystals.Moreover, the crystal exhibits upconversion emission properties. Green(531 and 552 nm) and red(670 nm) emission bands are recorded under the excitation of 980 nm diode laser, which correspond to the ~2 H_(11/2)→~4 I_(15/2), ~4 S_(3/2)→~4 I_(15/2) and ~4 F_(9/2)→~4 I_(15/2) transitions of Er~(3+) ions. Our results show the feasibility of using this crystal in photoelectric multifunctional devices.  相似文献   

8.
Er3+/Yb3+-codoped transparent oxyfluoride borosilicate glass ceramics containing Ba2GdF7 nanocrystals were prepared and spectroscopic properties of rare earth ions were investigated.Fluoride nanocrystals Ba2GdF7 were successfully precipitated in glass matrix,which was confirmed by X-ray diffraction(XRD)and transmission electron microscopy(TEM)results.In comparison with the as-made precursor,significant enhancement ofupconversion luminescence was observed in the Er3+/Yb3+codoped oxyfluoride glass ceramics,which may be due to the variation of coordination environment around Er3+and Yb3+ions after crystallization.The transition mechanisms of the green and red upconversion luminescence were ascribed to a two-photon process,and that of the blue upconversion luminescence was a three-photon process.  相似文献   

9.
Y2O3: Er^3+, Yb^3+ nanoparticles were synthesized by a homogeneous precipitation method without and with different concentrations of EDTA 2Na. Upconversion luminescence spectra of the samples were studied under 980 nm laser excitation. The results of XRD showed that the obtained Y2O3:Er^3+,Yb^3+ nanoparticles were of a cubic structure. The average crystallite sizes calculated were in the range of 28-40 nm. Green and red upconversion emission were observed, and attributed to ^2H11/2,^4S3/2→^4I15/2 and ^4F9/2→^4I15/2 transitions of the ion, respectively. The ratio of the intensity of green emission to that of red emission drastically changed with a change in the EDTA 2Na concentration. In the sample synthesized without EDTA, the relative intensity of the green emission was weaker than that of the red emission. The relative intensities of green emission increased with the increased amount of EDTA 2Na used. The possible upconversion luminescence mechanisms were discussed.  相似文献   

10.
A series of YNbO4:Bi3+ and YNbO4:Bi3+/Er3+ phosphors were prepared by a conventional high temperature solid–state reaction method. The results of XRD and Rietveld refinement confirm that monoclinic phase YNbO4 samples are achieved. The down-/up-conversion luminescence of Er3+ ions was investigated under the excitation of ultraviolet light (327 nm) and near infrared light (980 nm). Under 327 nm excitation, broad visible emission band from Bi3+ ions and characteristic green emission peaks from Er3+ ions are simultaneously observed, while only strong green emissions from Er3+ ions are detected upon excitation of 980 nm. Remarkable emission enhancement is observed in down-/up-conversion luminescence processes by introducing Bi3+ ions into Er3+-doped YNbO4 phosphors. Pumped current versus up-conversion emission intensity study shows that two-photon processes are responsible for both the green and the red up-conversion emissions of Er3+ ion. Through the study of the temperature sensing property of Er3+ ion, it is affirmed that the temperature sensitivity is sensitive to the doping concentration of Bi3+ ions. By comparing the experimental values of the radiative transition rate ratio of the two green emission levels of Er3+ ions and the theoretical values calculated by Judd-Ofelt (J-O) theory, it is concluded that the temperature sensing property of Er3+ ions is greatly affected by the energy level splitting.  相似文献   

11.
Flexible narrowband near infrared(NIR)photodetectors(PDs)are urgently in demand in the fastdeveloping era of flexible electronics,due to their crucial roles in various innovative applications.Hence,we designed and synthesized the core-shell structured NaYF4:Yb3+,Er3+@NaYF4:Nd3+upconversion nanoparticles(UCNPs),which can be pumped by the 808 and 980 nm lights.The upconversion luminescence(UCL)are significantly enhanced after being assembled with the opal photonic crystals(OPCs)due to the photonic crystal effect,with 55 and 48 folds of enhancement factors under illuminations of 808 and 980 nm lights,respectively.Based on this hybrid,the flexible narrowband PDs were successfully fabricated on the PET substrate with the structure of OPCs/NaYF4:Yb3+,Er3+@Nd3+/MAPbl3,which displays excellent detection performance to double narrowband NIR light(808 and 980 nm)benefiting from the amplified UCL,with responsivity of 8.79 and 7.39 A/W,detectivity of 3.01×1011and2.68×1011cm·Hz1/2/W for 808 and 980 nm lights detection respectively,along with short response time in the range of 120-160 ms.Furthermore,the OPCs/NaYF4:Yb3+,Er3+@NaYF4:Nd3+/MAPbI3 double narrowband PDs display low photodetection power threshold(0.05 W/cm2),outstanding flexibility,prominent moisture resistance,and good long-time stability.This work displays a new concept of narrowband NIR PDs,which open a new field for specific NIR light detections.  相似文献   

12.
Thermal sensing and imaging in the physiological temperature range are of great importance for studying physiological processes and treating diseases. Metal-organic frameworks(MOFs) exhibit great promise for developing luminescent thermometers due to their remarkable structural diversities and tunable luminescence properties. Here, we synthesized a series of luminescent mixed-lanthanide MOFs,Eu_xTb_(1-x)BPT(x = 0.019, 0.058, 0.106; H3 BPT = biphenyl-3,4',5-tricarboxylate acid) and adopted powder X-ray diffraction(PXRD), thermogravimetric analysis(TGA) and Fourier transform infrared(FT-IR) to characterize the resulting products. The temperature-dependent photoluminescence emission spectra were recorded to investigate their potential applications in physiological temperature readout. It is found that the intensity ratio of Tb~(3+) to Eu~(3+) is linearly correlated with temperature and the relative sensitivity is higher than 1.5%/℃ over the entire physiological temperature range. Furthermore,the temperaturedependent luminescence color emission allows for visual colorimetric temperature measurements.Luminescence lifetime testing and triplet energy level measurement were further conducted to study the mechanism.  相似文献   

13.
FTIR absorption spectra indicate that H+ can easily enter the crystal structure and form OH-centers in Er:Yb:YCOB and O—H bonds prefer to lie in the a-c plane. Within our current studied concentration level,crystal samples with higher OH-abso rption coefficie nts demonstrate stro nger fluo rescence intensity and longer fluorescence lifetime at 1535 nm. As the stretching vibration energy of OH-group approximately corresponds to the energy gap between the ~4 I_(11/2) and ~4 I_(13/2) levels of Er~(3+), and thus, OH-ions can shorten the fluorescence lifetime of Er~(3+)-~4I_(11/2) level by the phonon-assisted cross-relaxation process between the Er~(3+) and OH-ions. Our curre nt results confirm that a certain conte nt of OH ions can enhance the ene rgy transfer process from Yb~(3+) to Er~(3+) and subsequently promote fluorescence output in 1.5-1.6 μm.  相似文献   

14.
Low phonon energy yttrium aluminate was adopted as matrix and the upconversion materials yttrium aluminate co-doped with Yb3+ and Er3+ was synthesized by solid-state reaction method. The X-ray diffraction spectra and the upconversion emission spectra of various samples were measured and the effect of Er3+ concentration, sensitization, fluxing agent and calcining temperature on the luminescence properties was studied. Research results showed that the sample could emit green light at 543 and 570 nm when excited 980 nm laser; the optimum concentration of Er3+ should be 1.0%; sensitization of Yb3+ could enhance luminescent effects of Er3+ obviously; the optimum content of F3BO3 fluxing agent should be 8% and the optimum calcining temperature should be 1500 °C.  相似文献   

15.
A novel orange-red emitting Ba3Y4O9:Sm3+ phosphors were prepared by a high temperature solid-state reaction in air. X-ray diffraction (XRD), photoluminescence spectra, fluorescence decay and temperature-dependent emission spectra were utilized to characterize the structure and luminescence properties. The results show that the excitation spectrum includes a series of linear peaks at 350, 367, 382, 410, 424, 445, 470 and 495 nm, respectively. Under 410 nm excitation, the emission peaks were located at 574 nm (4G5/26H5/2), 608 nm (4G5/26H7/2), 659 nm (4G5/26H9/2) and 722 nm (4G5/26H11/2), respectively. The concentration quenching occurs when x equals 0.08 for Ba3Y4–xO9:xSm3+ phosphor and its mechanism is ascribed to the dipole–dipole interaction. The chromaticity coordinates of Ba3Y3.92O9:0.08Sm3+ phosphor are in the orange-red region. The temperature-dependent study shows that this phosphor has excellent luminescence thermal-stability. And the luminescence intensity of Ba3Y3.92O9:0.08Sm3+ phosphor at 473 K only declines by about 25.75% of its initial intensity. The experimental data indicate that Ba3Y4O9:Sm3+ phosphor may be promising as an orange-red emitting phosphor for white light emitting diodes.  相似文献   

16.
Er~(3+)-Yb~(3+)-Li~+:Gd_2(MoO_4)_3 and Er~(3+)-Yb~(3+)-Zn~(2+):Gd_2(MoO_4)_3 nanophosphors, synthesized by chemical co-precipitation technique were characterized through XRD,FESEM,dynamic light scattering(DLS),diffuse reflectance, photoluminescence, photometric and decay time analysis. The enhancement of about~28, ~149 and ~351 times in the green upconversion emission band is observed for the optimized Er~(3+)-Yb~(3+),Er~(3+)-Yb~(3+)-Li~+ and Er~(3+)-Yb~(3+)-Zn~(2+):Gd_2(MoO_4)_3 nanophosphors in comparison to the singly Er~(3+) doped nanophosphors. The electric dipole-dipole interaction is found to be responsible for the concentration quenching. The temperature dependent behaviour of the two green thermally coupled levels of the Er~(3+) ions based on the fluorescence intensity ratio technique was studied. The maximum sensor sensitivity ~38.7 × 10~(-3) K~(-1) at 473 K for optimized Er~(3+)-Yb~(3+)-Zn~(2+) codoped Gd_2(MoO_4)_3 nanophosphors is reported with maximum population redistribution ability~88% among the ~2H_(11/2) and ~4S_(3/2) levels.  相似文献   

17.
An optical heater based on hexagonal NaGdF_4:Yb~(3+)/Er~(3+) is reported. XRD, SEM and EDS characterization results show that F~-/Ln~(3+) can not only control the phase composition, particle size and morphology, but also affect the effective doping concentration of Yb~(3+) and Er~(3+).When F~-/Ln~(3+) is 12/1, the strongest upconversion luminescence is obtained. Based on the luminescent temperature sensing behavior of Er~(3+),the photo-thermal conversion performance was investigated. The results indicate that the temperature of irradiation spot is linearly dependent on the power density, and the photo-thermal responsivity is determined to be 3.3K·cm~2/W. Also, it is found that the photo-thermal conversion efficiency can be regulated by changing the Yb~(3+) doping concentration. Compared with the nano-gold, copper sulfide and carbon nanotubes, the NaGdF_4:Yb~(3+)/Er~(3+) has the triple functions of upconversion luminescence, temperature sensing, and photo-thermal conversion, and may therefore be a promising optical heater for photo-thermal therapy of tumors.  相似文献   

18.
Tellurite glasses were generally applied in rare earth optical materials due to their excellent physical and chemical properties. In this study, novel tellurite glasses composed of TeO2-TiO2-La2O3 were prepared by conventional melting-quenching method. Some basic physical parameters such as density, refractive indices, transition temperature and crystalline temperature were measured. The structure was analyzed by Raman spectra. The absorption, upconversion and fluorescence spectra were measured by UV-Vis-NIR spectrophotometer and spectrofluorimeter. Under 980 nm laser excitation, upconversion luminescence centered at 531, 545 and 657 nm corresponding to the transition 4H11/24I15/2, 4S3/24I15/2 and 4F9/24I15/2 respectively, were observed. The effects of TiO2 concentration on structure and upconversion luminescence intensity were discussed. The result indicated that the upconversion intensity increased as the phonon concentration decreased. The fluorescence properties of Er3+ doped glass were also studied. The dominant peak centered at 1531 nm and full width at half maximum (FWHM) was 64 nm. The Er3+ stimulated emission cross-section was calculated on the basis of McCumber theory. The possible mechanism of upconvesion and fluorescence were proposed.  相似文献   

19.
A series of Tb~(3+) and Eu~(3+) co-doped NaY(WO_4)_2 phosphors were synthesized by hydrothermal reactions.The crystal structure,morphology,upconversion luminescent properties,the energy transfer from Tb~(3+) to Eu~(3+)ions and the ~5 D_4→ ~7 F_5 transition of the Tb~(3+) ion in NaY(WO_4)_2:Tb~(3+),Eu~(3+) phosphors were investigated in details.The results indicate that all the synthesized samples are of pure tetragonal phase NaY(WO_4)2.Furthermore,the micrometer-sized needle spheres and excellent dispersion of the particles are obtained by adding polyethylene glycol(PEG-2000) as the surfactant.Phosphors of NaY(WO_4)_2:Tb~(3+),Eu~(3+) exhibit the492 nm blue emission peak,546 nm green emission peak,595 nm orange emission peak and 616 nm red emission peak under 790 nm excitation.The energy transfer from Tb~(3+) to Eu~(3+) is a resonant transfer,in which electric dipole-dipole interaction plays a leading role.By adjusting the doping concentration of Eu~(3+) in NaY(WO_4)_2: 1.0 mol%Tb~(3+),xmol%Eu~(3+) phosphors,the emitting color of UC phosphors can be tuned from green to red.  相似文献   

20.
In this study. we have employed a facile oxalate-assisted hydrothermal approach to tailor the morphology of β-NaYF_4:Er~(3+),Yb~(3+)(NYFEY) powders through the variation of the molar ratio of oxalate ions(Oxa~(2-)) and rare earth ions(RE~(3+)) in the range of 0.5:1.1:1.2:1, 5:1. and 10:1. The obtained results show that the crystallinity, particle size and upconversion luminescence intensity of the as-synthesized NYFEY particles are gradually decreased as the Oxa~(2-):RE~(3+) molar ratio increases from 0.5:1 to 10:1. For the purpose of photoelectrochemical performance evaluation,the as-synthesized NYFEY particles with different morphologies are incorporated into the nanocrystalline TiO2 films to form the multifunctional nano-and sub-micro meter composite photoanodes of dye-sensitized solar cells(DSSCs). A short-circuit current density(Jsc) of 14.26 mA/cm~2 and power conversion efficiency(PCE) of 7.31% are obtained for DSSCs prepared with hexagonal rod-like NYFEY crystals,evidencing an increase of 29.8% compared with DSSCs prepared with only TiO_2 nanoparticles. The demonstrated synthesis approach for tailoring the morphology and size of NYFEY particles and enhancing the performance of DSSCs can also be applied for other types of solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号