首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 548 毫秒
1.
采用扫描电化学显微镜(SECM)中的极化曲线法和交流阻抗图谱法研究5083铝镁合金在不同pH NaCl溶液中的腐蚀行为,结果表明:在酸性体系(pH 3~7),随着pH的增加,其腐蚀电位正移,点蚀电位相差不大,维钝电流密度减小,电化学阻抗谱中仅有1个容抗弧且呈现收缩趋势.同时,阻抗和相位角减小,电荷传递电阻升高,耐腐蚀性能增大.在碱性体系(pH 9~12),随着pH的增加,腐蚀电流密度增加,而腐蚀电位减小,腐蚀速度由0.000 9mm/a增加到0.025 6?mm/a.电化学阻抗谱中有2个容抗弧,在pH=12处出现感抗弧.同时,阻抗和相位角减小,金属化合物颗粒溶解过程加快,合金耐腐蚀性能降低.   相似文献   

2.
采用开路电位、电化学阻抗谱(EIS)、Mott-Schottky曲线和浸泡腐蚀实验研究了2507双相不锈钢在含不同浓度(0,0.001和0.01 mol·L-1)NaHSO3模拟海水中的腐蚀行为. 研究表明:开路电位随NaHSO3浓度的增加而负移,腐蚀倾向增大;电荷转移电阻Rt随浓度的增加而减小,耐蚀性降低;2507不锈钢的腐蚀形态为局部腐蚀,点蚀程度随浓度升高有所加剧,腐蚀速率随浓度的增加而增大;Mott-Schottky曲线和成膜后电化学阻抗谱测试表明,NaHSO3的加入增加了2507不锈钢表面钝化膜的点缺陷浓度,降低了钝化膜的稳定性,电荷转移阻力减小,腐蚀更容易发生. 这可能归因于NaHSO3的加入增加了模拟海水的酸度,并随NaHSO3浓度的增加促进了不锈钢表面钝化膜的破坏.   相似文献   

3.
通过现场暴露实验,研究了AZ31镁合金在西沙海洋大气环境下暴露4 a的长周期腐蚀行为.利用扫描电镜观察表面、截面的腐蚀产物以及去除腐蚀产物后的腐蚀形貌,并用能谱分析及X射线衍射仪对腐蚀产物的元素含量及相组成进行分析.研究结果表明,AZ31镁合金在西沙海洋大气环境下发生了较为严重的腐蚀,4 a内的平均腐蚀速度为11.95μm·a-1.Cl-和CO2在镁合金的腐蚀过程中起着至关重要的作用.吸附液膜中的Cl-主要破坏镁合金的保护膜,使镁合金发生阳极溶解;而CO2则会中和阴极反应产生的碱性离子并与Mg(OH)2发生反应生成含不同结晶水的Mg5(CO34(OH)2·xH2O表层腐蚀产物.由于表层腐蚀产物阻挡了CO2和Cl-向镁合金表面的传输,靠近基体处的腐蚀产物主要为Mg(OH)2.   相似文献   

4.
采用盐雾试验和电化学阻抗谱测试技术研究了纯锌和锌铝伪合金涂层在含氯离子环境中的腐蚀行为和电化学特性,通过扫描电镜、X射线物相分析等手段研究了原始涂层及腐蚀后的表面形貌和腐蚀产物的相结构,并对两种涂层的腐蚀机理进行了初步的探讨.随着盐雾时间的增加,纯锌涂层表面逐渐生成疏松多孔的胞状腐蚀产物层,主要腐蚀产物为Zn5(OH)8Cl2H2O、ZnO和Zn5(CO3)2(OH)6,盐雾试验达到768 h后腐蚀产物层局部区域发生龟裂.锌铝伪合金涂层表面生成致密的腐蚀产物层,主要为Zn5(OH)8Cl2H2O、Zn0.71Al0.29(OH)2(CO3)0.145·xH2O及ZnAl2O4.电化学阻抗谱测试结果表明:随着盐雾时间的延长,两种涂层的电荷转移电阻均逐渐增大,但锌铝伪合金涂层的阻抗要明显大于纯锌涂层,表现出了更好的耐蚀性.   相似文献   

5.
晶粒细化对Cu-40Ni合金在酸性含Cl-介质中耐蚀性能的影响   总被引:5,自引:0,他引:5  
采用电弧熔炼(CA)和机械合金化(MA)通过热压烧结工艺制备了晶粒尺寸差别较大的Cu-40Ni合金,借助于PARM273A和M5210电化学综合测量仪,利用动电位扫描法和交流阻抗技术对比研究了上述合金在酸性含Cl^-介质中的腐蚀电化学性能以及腐蚀机制。结果表明:两种合金的腐蚀电位随时间逐渐稳定,在中性Na2SO4溶液中加入H2SO4和NaCl后,两种合金的自腐蚀电位负移;晶粒细化后,两种合金的自腐蚀电位则正移。两种合金在中性及酸性含Cl^-介质中均存在钝化现象,但在酸性含Cl^-介质中钝化区间很短,钝化能力较弱。两种合金的交流阻抗谱均由单容抗弧组成,反应由电化学过程控制。晶粒细化后,合金中存在大量晶界,参与腐蚀反应的活性原子数增加,促使MACu40Ni合金的腐蚀速度高于CACu-40Ni合金。  相似文献   

6.
采用动电位极化曲线和电化学阻抗谱等电化学实验方法以及扫描电镜和能谱等表面分析技术对20#碳钢在不同H2S质量浓度(0,95.61,103.22,224.16 mg·L-1)、不同温度(25,35,45℃)下的NACE溶液(含CO2)中腐蚀行为进行了研究,同时对该环境下腐蚀产物的形成机制进行了探讨.发现在含有CO2的NACE溶液中,加入少量H2S,能加剧碳钢腐蚀,加速阳极铁的溶解和阴极氢气的析出.随着H2S质量浓度的增加,腐蚀电流密度增大,碳钢腐蚀加剧.温度升高,腐蚀极化电阻变小,腐蚀也会加剧.腐蚀试样外层絮状腐蚀产物主要是铁碳化物,接近基体表面的腐蚀产物主要是铁硫化物.   相似文献   

7.
通过对CuZnAl舍金在3.5%NaCl和3.5%NaCl+NH,溶液中的腐蚀速率和电化学参数的测试及CuZnAl合金腐蚀形貌的观察,分析了NH3对CuZnAl合金在3.5%NaCl溶液中腐蚀行为的影响。结果表明:NH3能改变CuZnAl舍金的腐蚀形貌,使合金的腐蚀电位负移。腐蚀电流增加,合金的腐蚀速率增大。  相似文献   

8.
Ce含量对Al在3.5%NaCl溶液中腐蚀行为影响的研究   总被引:1,自引:0,他引:1  
稀土元素及其含量对铝合金耐腐蚀性能的影响及其机制是铝合金开发利用的重要研究课题,采用高频熔炼方法制备Al1-xCex(x=0,0.2%,2.0%(原子分数))合金,通过X射线衍射、金相分析、电化学测试、扫描电镜和能谱等分别对制备的Al1-xCex合金的结构、动电位线性扫描极化曲线、浸泡与电化学腐蚀前后表面形貌的变化进行了研究;对Al1-xCex在3.5% NaCl溶液中耐腐蚀性能与铈含量的关系进行了系统的分析.结果表明:由于Cl-离子的存在,铝在3.5% NaCl溶液中发生点蚀破坏;稀土Ce的加入能够细化晶粒,改善合金微观结构,减弱Cl-离子对点蚀的影响;Ce元素在腐蚀表面层富集,有利于形成连续钝化膜,提高合金在NaCl溶液中的耐蚀能力;微量稀土Ce(0.2%)的加入使合金的自腐蚀电位升高,腐蚀电流密度降低,耐腐蚀性能改善明显;但随着Ce含量的增加,即含量高于铈在铝中的溶解度后,铝与铈将形成金属间化合物,基底与金属间化合物相界面的存在使合金的耐腐蚀性能有所降低,Ce含量为0.2%合金的耐腐蚀性能比Ce含量为2.0%的合金要好.所有合金腐蚀后的主要产物为Al2O3.  相似文献   

9.
为了评估Sn-Sb合金焊料的电化学可靠性,以Sn-xSb(x=0.5%,3%,5%,10%,质量百分数)合金为工作电极,Pt片为对电极,饱和甘汞电极(SCE,饱和KCl溶液)为参比电极,中性5% NaCl溶液为腐蚀溶液,采用电化学腐蚀试验方法,研究了Sb含量对Sn-Sb合金焊料的电化学腐蚀行为的影响。通过对合金样品的动电位极化曲线和电化学交流阻抗谱(EIS)的分析,得出Sn-Sb合金焊料耐腐蚀性下降的趋势为Sn-10Sb > Sn-5Sb > Sn-3Sb > Sn-0.5Sb。  相似文献   

10.
利用极化曲线测试方法、交流阻抗技术研究了Al88Ce8Co4非晶合金在NaCl溶液中的电化学腐蚀行为。研究结果表明,Al88Ce8Co4非晶合金在NaCl溶液中具有很好的耐腐蚀性能。NaCl溶液浓度严重影响Al88Ce8Co4非晶合金的抗腐蚀性能,在所研究的浓度范围内,极化曲线都表现出明显的钝化趋势,EIS图谱均由单一的容抗弧构成。在浓度为0.5mol/L~2mol/L范围内,随浓度的增加,自腐蚀电位有向负方向移动的趋势,腐蚀电流密度逐渐降低,电荷转移电阻逐渐增大,当浓度达到4mol/L时,自腐蚀电位向负方向移动较大,相较于2mol/L时,腐蚀电流密度又有所升高,电荷转移电阻有所降低。  相似文献   

11.
为了改善涂层的组织和性能,对超音速等离子喷涂技术制备的高铝青铜涂层进行高频感应重熔处理,研究重熔后涂层的微观组织结构特征和界面结合状态.感应重熔前涂层具有层流状组织特点,含有少量氧化渣、孔隙及未完全熔融颗粒,涂层与基体间以机械结合为主.感应重熔能消除未熔颗粒和夹杂,使组织致密、均匀,组织的层流特征弱化,孔隙率有所下降.基体元素和涂层元素相互扩散,在界面形成一条明显的白亮带,呈冶金结合状态,结合牢固,涂层的结合性能有所改善.重熔后扩散带和涂层表面的硬度较高,界面结合强度也由重熔前的25.110提升至83.358 MPa.   相似文献   

12.
采用微弧氧化(MAO)技术在7050铝合金表面制备了陶瓷膜层,运用扫描电子显微镜(SEM)和能谱分析仪(EDS)表征陶瓷膜微观结构,采用动电位极化曲线、电化学阻抗谱(EIS)和慢应变速率拉伸试验(SSRT)研究了微弧氧化膜对7050铝合金在3.5%(质量分数) NaCl水溶液中腐蚀和应力腐蚀开裂(SCC)行为的影响.结果表明:微弧氧化膜层由表面疏松层与内部致密层组成,表面疏松层主要由Al2O3组成,内部致密层由氧化铝与铝烧结而成.微弧氧化膜层可以有效抑制7050铝合金表面的腐蚀萌生及明显降低腐蚀速率,且使7050铝合金的应力腐蚀敏感性出现显著下降.   相似文献   

13.
用Tafel曲线和电化学阻抗谱(EIS)研究7075铝合金在不同pH值(pH=3、5、7、9、11) 的0.6 mol/L NaCl溶液中的腐蚀行为.结果表明,溶液pH值在3~7时,腐蚀电位正移,pH值在7~11时,腐蚀电位负移,pH值为11时腐蚀电位最负. pH值在3~11时,腐蚀速度呈现先降低后增大的过程,pH值为11时腐蚀速度最大,达到2.122 2 mm/a.在强酸溶液中,电化学阻抗谱中出现明显的感抗弧,表明存在不均匀点蚀现象. pH值为7和9时,电化学阻抗谱中只出现1个容抗弧,表明铝合金腐蚀属于金属基体溶解过程. pH值为11时,阻抗谱中出现2个容抗弧,表明铝合金腐蚀伴随铝合金的自溶解行为.   相似文献   

14.
采用极化曲线、交流电化学阻抗谱(EIS)和扫描电化学显微镜(SECM)技术研究了咪唑啉在3 %(指质量分数,下同)NaCl溶液中对2099 Al-Li合金的缓蚀行为.结果表明:咪唑啉有很好的缓蚀效果.极化曲线测试和交流阻抗测试都验证了咪唑啉浓度达到0.01 mmol/L时,缓蚀效率达77 %以上的准确性.采用扫描电化学显微镜技术(SECM)研究0.01 mmol/L咪唑啉缓蚀剂在3 % NaCl+5 mmol/LKI溶液中对2099铝锂合金的缓蚀行为.结果表明:在缓蚀剂条件下,合金表面电流峰数量减少,强度减弱.   相似文献   

15.
采用激光熔覆与微弧氧化技术相结合在海洋钢表面制备了复合膜层.运用扫描电子显微镜(SEM)、能谱仪(EDS)和X射线衍射仪(XRD)表征复合膜层的微观结构,采用极化曲线、电化学阻抗谱、腐蚀磨损实验和浸泡腐蚀实验等测试方法研究膜层在质量分数3.5%的NaCl水溶液中腐蚀行为,并与熔覆涂层和基体进行对比.结果表明:复合膜层主要分为内致密层和外疏松层,疏松层主要由γ-Al2O3组成,致密层主要由α-Al2O3组成,与基底层结合较好,复合膜层表面硬度最大能达到HV0.2 1423.3,比熔覆涂层高47.6%,其硬度较S355海洋钢有显著提升.基体在腐蚀和磨损交互作用中主要以腐蚀加速磨损为主,涂层在交互作用中主要以磨损加速腐蚀为主,在经过微弧氧化处理后,膜层的自腐蚀电位负移,钝态电流密度上升,抗磨蚀性能明显提高.熔覆涂层的浸泡腐蚀方式以点蚀为主,复合膜层腐蚀较轻微,阻抗模值最大能达到105.3 Ω·cm2,比熔覆层提高两个数量级,这表明复合处理可进一步提高涂层的耐腐蚀性.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号