首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pure SnO2 and Ce-doped (1%, 4%, 7%, 10% in mass ratio) SnO2 powders were prepared by a simple sol-gel method. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) specific surface area analyzers. Results showed that the 7% Ce-doped sample has a particle size of 0.1-0.3 μm with a narrow particle size distribution while the pure SnO2 was consisted of large agglomerated particles with a diameter up to several micrometers. When used as the catalyst to degrade methyl orange (MO), the 7% Ce-doped sample showed best photocatalytic property. These properties can be attributed to the large surface area and small particle size of the 7% Ce-doped sample.  相似文献   

2.
In this work,the unique starlike La-doped ZnO-SiO2 photocatalysts were constructed by an evaporation and calcination method and characterized in detail.UV-vis reflectance and DFT calculation confirm that the doping with La allows to obtain a decrease of band gap of ZnO/SiO_2,which enhances visible light absorbance and oxidizing ability.The photoluminescence intensity reduces greatly,indicating more effective separation of the photo generated carriers of La-doped ZnO-SiO2.Photocatalytic activities of Ladoped ZnO-SiO2 with different doping ratios under simulated visible light irradiation were evaluated with malachite green(MG) as a model pollutant.Under optimized conditions including solution pH of 8,15 mg/L of MG solution and 15 mg of catalyst dosage,0.2% La-ZnO-SiO2 exhibits the best catalytic activity in photodegradations of MG in water.The removal and mineralization efficiency of MG can reach 96.1%and 70.9% in 140 min,respectively.The as-prepared catalysts present superior stability and recyclability after four times reuse.Moreover,selective quenching experiments indicate that hydroxyl radical(·OH),hole(h~+) and superoxide radical(·O_2~-) are the main reactive species responsible for MG degradation.Possible mechanism for photocatalytic elimination of MG over La-doped ZnO/SiO_2 photocatalyst is finally proposed.  相似文献   

3.
Eu3+-WO3 nanoparticles were successfully prepared by the modified method of Pechini. The prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), and UV-vis spectroscopy. Results showed that the Eu3+-WO3 nanoparticles, which had an average external diameter of 10–25 nm, were composed of the different shapes of puncheon and catenary after being pretreated by pH, pressure vessal, and surfactant. Moreover, structural transformation matrix contained different crystals of anorthic and orthorhombic structure. The photocatalytic activities of the nanoparticles were evaluated by photocatalytic decomposition of rhodamine B. Eu3+-WO3 nanoparticles were more efficient than WO3 and TiO2 on sunlight use ratio. Photocatalysis experiments indicated that the Eu3+-WO3 nanoparticles exhibited the highest photocatalytic activity.  相似文献   

4.
Pr6O11 nanoparticles were obtained by subsequent thermal decomposition of the as-prepared precipitate formed under ambient temperature and pressure using NaOH as precipitant.The calcination process was affected,for 1 h in static air atmosphere,at 400-700 °C temperature range.The different samples were characterized using X-ray diffraction(XRD),transmission electron microscopy(TEM),field emission scanning electron microscopy(FE-SEM),thermogravimetric analysis(TGA),in situ electrical conductivity,and N 2 adsorption/desorption.The obtained results demonstrated that nano-crystalline Pr6O11,with crystallites size of 6-12 nm,started to form at 500 °C.Such value increased to 20-33 nm for the sample calcined at 700 °C.The as-synthesized Pr6O11 nanoparticles presented high electrical conductivity due to electron hopping between Pr(III)-Pr(IV) pairs.  相似文献   

5.
The salivary excretion of phenobarbital was investigated by collecting parotid saliva (Pr) and mandibular-sublingual saliva (MS) separately after intravenous administration in beagle dogs. (1) The alterations in the proportions of saliva secreted by the different glands were produced by salivation stimulants such as citric acid, ascorbic acid, sodium chloride and sodium glutamate. (2) The phenobarbital concentrations in both Pr amd MS were lower than those in plasma. The drug concentrations in MS were significantly lower than in Pr with stimulus of 10% citric acid of 15% sodium chloride (p less than 0.05). There was a significant correlation between phenobarbital concentration in each saliva and plasma specimen ( p less than 0.05). (3) The stimulation with 10% citric acid produced higher saliva /plasma drug concentration ratios (S/P ratios: 0.923 +/- 0.175 for Pr, 0.633 +/- 0.073 for MS) than that with 15% sodium chloride (S/P ratios: 0.597 +/- 0.071 for Pr, 0.509 +/- 0.067 or MS). (4) The S/P ratios were hardly influenced by salivary flow rates, at least under the experimental conditions examined in this study. (5) The increased S/P ratios were observed with higher salivary pH and then the equation of Matin et al. 3) seemed to hold for the average values of salivary pH and S/P ratio. (6) The stimulation with 10% citric acid produced higher protein concentration in saliva and higher S/P ratio than that with 15% sodium chloride following alternate stimulations in the same dog.  相似文献   

6.
We report the first time as-synthesized antimony trisulfide (Sb2S3) nanowires with flower-like organization by using different oleic acid (OA)/2-ethylhexanoic acid (EHA) ratio. The resulting optical band-gap energy is 1.6 eV, and it is independent of the OA/EHA ratios. Sb2S3 nanowires grow predominantly along the [010] direction, and a significant decrease in unit cell parameters was observed. It seems that the shorter branched hydrocarbon chain leads to the better structural stability of the synthesized Sb2S3 nanowires.  相似文献   

7.
Praseodymium (Pr) was impregnated to CeO2-ZrO2 solid solution by an impregnation method. The as-obtained Pr modi- fied CeO2-ZrO2 was impregnated with 1 wt.% Pd to prepare the catalysts. The structure and reducibility of the fresh and hydrother- really aged catalysts were characterized by X-ray diffraction (XRD), Raman, X-ray photoelectron spectroscopy (XPS), CO chemi- sorption and H2 temperature-programmed reduction (H2-TPR). The oxygen storage capacity (OSC) was evaluated with CO serving as probe gas. Effects of impregnated Pr on the structure and oxygen storage capacity of catalysts were investigated. The results showed that the aged Pr-impregnated samples had much higher OSC and better reducibility than the unmodified ones. The scheme of structural evolutions of the catalysts with and without Pr was also established. Partial of the impregnated Pr diffused into the bulk of CeO2-ZrO2 during ageing, which inhibited the sintering, and increased the amount of oxygen vacancies in CeO2-ZrO2 support. Furthermore, those impregnated Pr species which covered on the surface of the support obstructed the strong metal-support interaction between Pd and Ce so as to reduce the encapsulation of Pd as well as the back spill-over of the oxygen during the catalytic process.  相似文献   

8.
Fe-Ce-OH@AR14 was obtained via the adsorption of acid red 14(AR14) on Fe-Ce-OH prepared by the codeposition of cerium nitrate hexahydrate,ferric nitrate nonahydrate,and ammonia,and then Fe-Ce-O@C with high photocatalyic efficiency was synthesized by the calcination of Fe-Ce-OH@AR14 in N2.For comparison,Fe-Ce-O was also prepared by the calcination of Fe-Ce-OH in N2.The obtained materials were characte rized by X-ray diffraction(XRD),Raman,X-ray photoelectron spectroscopy(XPS...  相似文献   

9.
On the basis of hydrothermal synthesis of Ag-CeO2 microspheres, Ag-CeO2/g-C3N4 composite photocatalyst with heterostructure was prepared by simple solvent evaporation of Ag-CeO2 and g-C3N4. To characterize the composition, structure, morphology and light absorption properties of the as-prepared Ag-CeO2/g-C3N4 composites, XRD, FTIR XPS, SEM, TEM, PL, BET and UV-vis DRS were used, respectively. The as-prepared photocatalyst was subjected to photocatalytic degradation of pollutants, and the prepared composite material has excellent photocatalytic activity for photodegradation of methylene blue (MB). The research shows that the photocatalytic properties of Ag-CeO2/g-C3N4 composites were related to the mass ratio of Ag-CeO2 microspheres and g-C3N4 nanosheets. When the ratio of Ag-CeO2 microspheres: g-C3N4 is 1:5, the composites have the highest photocatalytic activity, which was 9.6 and 3.3 times that of single Ag-CeO2 and g-C3N4, respectively. The improvement of photocatalytic activity is attributed to the heterostructure between the composite materials and the addition of noble metal silver, and the degradation of methylene blue by the visible light irradiation material is greatly improved. Finally, an attempt was made to analyze the principle of photocatalytic degradation of pollutants in prepared materials.  相似文献   

10.
A novel fly ash cenospheres(FACs)-supported CeO2 composite(CeO2/FACs) was successfully synthesized by the modified pyrolysis process.The prepared composites were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM), X-ray photoelectron spectroscopy(XPS), and diffuse reflection spectra(DRS) techniques.XRD results indicated that the CeO2 film coated on cenospheres was a face-centered cubic structure.SEM images confirmed that the CeO2 film was relatively compact.XPS results showed that Ce was present as both Ce4+ and Ce3+ oxidation states in CeO2 film coated on FACs substrate.The bandgap of the composite was narrower compared with the pure CeO2.The as-prepared material exhibited good photocatalytic activity for the decolorization of methylene blue(MB) under visible light irradiation, and the first-order reaction rate constant(k) of 0.0028 min–1 for CeO2/FACs composite was higher than 0.0015 min–1 of pure CeO2.The fact that they floated on water meant that CeO2/FACs composites were easily recovered from water by filtration after the reaction.The recycling test revealed that the composites were quite stable during the MB photocatalytic decolorization.The CeO2/ FACs catalyst was therefore promising for practical use in the degradation of pollutants or water cleanup.  相似文献   

11.
The Y, F, and Ag tridoped TiO2/SnO2 composite nanocrystalline film (YFAg–TS) with prominent photocatalytic performance was prepared by the modified sol–gel method and was characterized by utilizing X-ray diffraction (XRD), differential thermal and thermogravimetric (DTA–TG) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET) method, ultraviolet–visible diffuse reflectance spectroscopy (UV–vis DRS), and photoluminescence (PL). The XRD and DTA–TG results expose that the YFAg–TS catalyst is a mixed phase consisting of anatase, rutile, and chlorargyrite, which is beneficial to improving the photocatalytic performance of TiO2. The SEM, TEM, and BET results disclose that the YFAg–TS film has smaller nanoparticles, higher specific surface area, and narrower pore size compared with pure TiO2 film. The XRD and TEM results exhibit that a part of yttrium can enter the TiO2 lattice to induce lattice distortion. The XPS results confirm the presence of Y3+ state in the YFAg–TS sample, and Y3+ ions can act as the trapping site of electrons to expedite the separation of electrons and holes. The UV–vis DRS results reveal that the YFAg–TS film has an obvious absorption edge shift and a narrower bandgap (2.70 eV) compared with pure TiO2 film. The PL results show that the YFAg–TS film has the highest photogenerated electrons and holes separation efficiency and charges transfer efficiency among all samples. The photocatalytic activity of the YFAg–TS was assessed by monitoring the degradation of methyl green and formaldehyde solution. The results manifest that the YFAg–TS film has high stability and excellent photocatalytic performance. The possible synergistic photocatalytic mechanism of YFAg–TS films has been discussed in this paper.  相似文献   

12.
BiVO4 photocatalysts co-doped with La and B were prepared by sol-gel method using citric acid as chelate.The samples were characterized by X-ray photoelectron spectroscopy(XPS),X-ray diffraction(XRD),scanning electron microscopy(SEM),Brumauer-Emmett-Teller(BET),UV-Vis diffuse reflectance spectra(DRS) and the photocatalytic activity was investigated by photocatalytic degradation of methyl orange(MO).The results showed that boron and lanthanum ions incorporated into the lattice of BiVO4,and co-doping led to more surface oxygen vacancies,high specific surface areas,small crystallite size,narrow band gap and intense light absorbance in visible region.And the doped La(III) ions could help the separation of photogenerated electrons.Compared with BiVO4 and B-BiVO4,the photocatalytic activity of La-B co-doped BiVO4 was remarkably improved due to the synergistic effects of the co-doped ions.The degradation rate of MO in 60 min was 98.4% when La doping content was 0.05 mol.%,which was much higher than that of pure BiVO4(20%) and B-BiVO4(37%).  相似文献   

13.
In the present article, we explore a cost-effective and an environmentally benign route to prepare magnesium oxide (MgO) nanoparticles through thermal decomposition of magnesium hydroxide (Mg(OH)2) nanoparticles. Mg(OH)2 nanoparticles were prepared using different solvents namely ethylenediamine (EDA) and triethanolamine (TEA) by wet chemical method, and subsequently the as-synthesized Mg(OH)2 nanoparticles were calcinated at 400°C for 2 h in air to obtain MgO nanoparticles. XRD pattern revealed that as-synthesized Mg(OH)2 nanoparticles are polycrystalline in nature with hexagonal structure, and after annealing it transforms to MgO nanoparticles with cubic structure. FTIR spectrum of as-synthesized Mg(OH)2 nanoparticles indicated the OH antisymmetric stretching vibration of the Mg(OH)2 and after annealing the sharp peak at 3686 cm−1 disappears, which confirms the complete transformation of hexagonal Mg(OH)2 to cubic MgO. SEM analysis showed the formation of interfused Mg(OH)2 nanoflakes and coral-like hierarchical MgO nanostructure made up of stacked nanoflakes. Optical band gap energy of Mg(OH)2 and MgO nanoparticles prepared using different solvent were estimated using UV–Vis DRS. Degradation of methyl orange was performed to investigate the photocatalytic activity of coral-like hierarchical MgO nanostructure. Results demonstrate that coral-like hierarchical MgO nanostructure possessing large surface area and porous morphology exhibited good photocatalytic degradation of methyl orange.  相似文献   

14.
Tin dioxide (SnO2) and La-doped (1%, 5%, 10% in mass ratio) SnO2 samples were prepared via a hydrothermal method. The as-prepared powders were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results showed that the particle size of SnO2 decreased gradually with the increase of the doped La element. When used as anode materials of Li ion battery, the La-doped samples exhibited better cycling performance than the pure SnO2, and the cycling performance of the La-doped samples got better and better with the increase of the doped La. The better electrochemical performance of the doped material could be attributed to the doping of La element, which not only enabled SnO2 powders to have a good dispersivity but also reduced their particle size.  相似文献   

15.
Ceria nanoparticles were facilely synthesized by a molten NaOH-KOH hydroxide flux method with the precursor of Ce(NO_3)_3·6H_2O under different conditions in alumina crucibles or Teflon-lined stainless steel autoclave.The XRD patterns and TEM images show that both the crystal and particle sizes of synthesized nanoceria are around 10 nm.XPS results reveal that the nanoceria obtained in alumina crucible has a Ce~(3+) fraction of 17.1% which is higher than that of ceria synthesized in the Teflon vessel,the FTIR spectra of nanoceria prepared in alumina crucible show a stronger intensity of O-H stretching mode.UV-DRS and PL spectra results show that the nanoceria synthesized in alumina crucible with a calculated band gap of 2.9 eV has a wider responding light wavelength and a lower photogene rated electron-hole recombination rate,due to a higher concentration of oxygen vacancies(Ce~(3+)%).The photocatalytic results show that the degradation ratio and rate of the Rhodamine B(RhB) solution with the nanoceria synthesized in alumina crucible are 98.39% and 0.02919 min~(-1),both of which are larger than those of the ceria obtained from Teflon vessel.This method proves to be a simple and scalable way to synthesize nanoceria with rich oxygen vacancies and high photocatalytic activity.  相似文献   

16.
The rare earth Pr doped Ca1-x Prx MnO3(x=0,0.06,0.08,0.1,0.12,and 0.14) compound bulk samples were prepared to study the effect of Pr doping on thermoelectric transport properties of CaMnO3 compound system.The doped samples exhibited single phase composition within the experimental doping range,with condensed bulk microstructure and small porosities.The electrical resistivity was remarkably reduced for doped samples,on account of the enhanced carrier concentration;the absolute value of Seebeck coefficient was deteriorated mainly due to enhanced electron carrier concentration.The electrical performances of the doped samples reflected by resistivity and Seebeck coefficient fluctuations were optimistically tuned,with an optimized power factor value of 0.342 mW/(m·K2) at 873 K for x=0.08 sample,which was very much higher comparing with that of the un-doped sample.The lattice thermal conduction was really confined,leading to distinctly repressed total thermal conductivity.The thermoelectric performance was noticeably improved by Pr doping and the dimensionless figure of merit ZT for the Ca0.92 Pr0.08 MnO3 compound was favorably optimized with the maximum value 0.16 at 873 K.  相似文献   

17.
An inorganic nanomaterials combination of Sm, Ag, and TiO2 was synthesized using supercritical fluid drying (SCFD) combined with solgel techniques. The structure, photocatalysis and bacteriostatic activity of the materials were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XRPS), photocatalytic performance, and antibacterial activity experiments. The XRD results showed that the average particle diameter of Sm/Ag/TiO2 was 14.62 nm and Ag and Sm ions were dispersed on the surface of TiO2 in a highly dispersed, amorphous form. The TEM image showed that the size of the particle was 12 nm using the scherer formula. The XPS result showed that the element Sm was doped and Ag was loaded inorganic nanomaterials successfully. Sm/Ag/TiO2 exhibited optimal photocatalytic properties at 600 oC, the photocatalytic optimal proportion of Sm/Ag/TiO2 was 2:2:100. When the molar ratio was 2:2:100, the bacteriostatic circle diameter was 16 mm for Staphylococcus aureus, the minimum bacteriostatic concentration was 200μg/mL for white beads coccus, and the minimum bactericidal concentration was 2×10^4μg/mL for white beads coccus. The SEM results showed that the antibacterial material attached to the candida albicans cell surface, cells appeared fold deformation. Therefore the inorganic nanomaterials Sm/Ag/TiO2 had high temperature resistance, good photocatalytic and antibacterial characteristics in visible light.  相似文献   

18.
Trivalent dysprosium(Dy~(3+)) activated nanocrystalline yttrium vanadate(YVO_4) phosphor was synthesized via co-precipitation method. The prepared samples were characterized by X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR), scanning electron microscopy(SEM), optical absorption and photo luminescence(PL) techniques. The XRD patterns reveal the tetragonal crystalline phase. SEM images reveal that Dy doped YVO_4 nanocrystals are agglomerated. EDAX confirms the formation of YVO_4:Dy. FTIR spectrum shows two strong absorption bands at 459 and 761 cm~(-1). Optical absorption spectrum showed the surface defects in the as-prepared samples. The PL emission spectrum shows two characteristic emission bands at 485 and 575 nm. The strong yellow emission peak at 575 nm is assigned to ~4 F_(9/2)→~6 H_(13/2) hyper sensitive transition of Dy~(3+) ions, Study of CIE chromaticity diagram indicates the suitability of the phosphor for the development of yellow-green LEDs.  相似文献   

19.
Lutetium aluminum garnet (LuAG) precursors doped with different Pr3+ concentration (0.25at.%, 0.5at.%, 1.0at.%, 3.0at.%, 5.0at.%) were synthesized via a co-precipitation method using ammonium hydrogen carbonate as precipitant. The phase evolution and mor-phology of the precursor were characterized with X-ray diffractometer (XRD) and transmission electron microscopy (TEM). The resultant LuAG:Pr3+ powder was sintered into translucent ceramic without any additives in vacuum at 1150℃ and then in nitrogen atmosphere at 1700℃. Photohiminescence spectra of LuAG:Pr3+ powder and ceramic were measured at room temperature in vacuum ultraviolet (VUV) and ultraviolet (VU) region. For the 5d-4f transition of Pr3+ ions, dominant emission of ceramic samples peaking round 311 nm had higher lumines-cence intensity. And the host absorption in ceramic samples was not as intensive as that in powder samples. The luminescent intensity of LuAG:Pr3+ varied with the Pr3+ contents and the quenching concentration was about 1.0at.% for ceramic and 3.0at.% for powder, which was much higher than 0.24at.% for LuAG:Pr3+ single crystals. This phenomenon showed that the ceramic had some superiority over single crystals.  相似文献   

20.
首先在水溶液中通过沉淀反应制备了BiOI,然后在不同温度下对其进行焙烧,考察其稳定性.对不同温度焙烧制得的样品进行了X-射线粉末衍射(XRD)、热重(TGA)、扫描电镜(SEM)、透射电镜(TEM)、紫外-可见(UV-vis)漫反射(DRS)吸收等表征.以可见光(λ〉420 nm)为光源,对在不同温度焙烧后的样品进行了光催化降解亚甲基蓝模拟废水的活性测试.结果表明,BiOI不是一种稳定的化合物.它在焙烧过程中可以发生由BiOI→Bi5O7I→α-Bi2O3的系列化学变化.紫外-可见漫反射测试和计算结果表明,BiOI、Bi5O7I、Bi5O7I/Bi2O3混合物和Bi2O3各样品对应的禁带宽度分别为1.80 eV、2.47 eV、2.77 eV和3.15 eV.在可见光照射下,光催化活性顺序为BiOI〉Bi5O7I〉Bi5O7I/Bi2O3混合物〉Bi2O3.这与催化剂对可见光的吸收能力变化相一致.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号