首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigates the applicability of five bed-load-transport formulas (the Meyer-Peter and Müller, Schoklitsch, Bagnold, Smart and Jaeggi, and Rickenmann equations) to predict bed-load transport rates of frequent, low-magnitude flood events (maximal bankfull discharge) for a mountainous, poorly sorted gravel-bed river characterized by a bimodal sediment-size distribution and spatially distributed patches. For model parametrization, special emphasis was placed on the spatial composition of the grain-size distribution (GSD) to evaluate the impact of preferential removal of sediments from patches with finer sediments on bed-load transport. Three parametrization approaches to the choice of an appropriate sediment size that considered the apparent bimodality of the GSD to varying degrees were tested. The modeling study demonstrated that the incorporation of spatial structure of GSD and its bimodal character has an important impact on model performance—a unimodal parametrization failed to reproduce measured bed-load rates for all tested bed-load formulas; a threshold parametrization approach that considered only finer sediments from the small patches as bed-load source material in combination with the Schoklitsch, Smart and Jaeggi, and Rickenmann equations yielded the best results, whereas the Meyer-Peter and Müller and the Bagnold equations failed to predict bed-load rates for all parametrization approaches. The modeling study thus showed that bed-load formulas are sensitive to the spatial structure of the GSD, which should not be treated as a continuum of sediment size fractions but rather as composition of finer sediment patches to enable an adequate reproduction of measured bed-load data from low-magnitude floods in gravel-bed rivers.  相似文献   

2.
This paper describes a new model-based segmentation technique combining desirable properties of physical models (snakes), shape representation by Fourier parametrization, and modelling of natural shape variability. Flexible parametric shape models are represented by a parameter vector describing the mean contour and by a set of eigenmodes of the parameters characterizing the shape variation. Usually the segmentation process is divided into an initial placement of the mean model and an elastic deformation restricted to the model variability. This, however leads to a separation of biological variation due to a global similarity transform from small-scale shape changes originating from elastic deformations of the normalized model contours only. The performance can be considerably improved by building shape models normalized with respect to a small set of stable landmarks (AC-PC in our application) and by explaining the remaining variability among a series of images with the model flexibility. This way the image interpretation is solved by a new coarse-to-fine segmentation procedure based on the set of deformation eigenmodes, making a separate initialization step unnecessary. Although straightforward, the extension to 3-D is severely impeded by difficulties arising during the generation of a proper surface parametrization for arbitrary objects with spherical topology. We apply a newly developed surface parametrization which achieves a uniform mapping between object surface and parameter space. The 3-D procedure is demonstrated by segmenting deep structures of the human brain from MR volume data.  相似文献   

3.
The energy-dependent, semiempirical, surface transparency factor of Kox et al. is accurately represented by a simple analytical expression. Total reaction cross sections obtained using this parametrization agree with Kox's predictions to within four percent.  相似文献   

4.
Direct measurements of total reaction cross sections (sigma R) have been performed in the energy range of 10-300 MeV/nucleon for heavy ion collisions. A decrease of sigma R with increasing energy was observed for a wide range of masses of the colliding systems. The data suggest that sigma R reaches a minimum located around 300 MeV/nucleon independently of the projectile target combination. A dependence of sigma R on mass asymmetry of the svstem is also demonstrated. Trends of sigma R in this energy range are well reproduced by the predictions of a simple microscopic model based on individual nucleon-nucleon collisions. Our data have been employed in this framework to derive a new semi-empirical parametrization of sigma R. Most of the experimental results in the intermediate and high energy range have been reproduced by this parametrization using a single energy-dependent parameter.  相似文献   

5.
We have examined the parametrization of the e^+e^- → ωπ0 cross section in the vicinity of the φ resonance and the extraction of the branching fraction of the isospin violating process φ → ωπ0 from experimental data. We found that there are two possible so  相似文献   

6.
Interacting Divided Channel Method for Compound Channel Flow   总被引:1,自引:0,他引:1  
A new method to calculate flow in compound channels is proposed: the interacting divided channel method (IDCM), based on a new parametrization of the interface stress between adjacent flow compartments, typically between the main channel and floodplain of a two-stage channel. This expression is motivated by scaling arguments and allows for a simple analytical solution of the average flow velocities in different compartments. Good agreement is found between the analytical model results and laboratory data from the literature.  相似文献   

7.
张利  钱平 《鞍钢技术》1998,(12):39-41
采用模块编程技术,应用金属加工学原理、针对鞍山第一轧钢厂的现场条件,用VB语言开发了一个基于Windows平台的功能较强的H型钢计算机辅助孔型系统主要包括 和何参数计算、力参参数计算及CAD参数化科等功能。  相似文献   

8.
本文介绍了基于Solid Edge的转炉本体研究和设计优化,利用SE对其进行三维的数字化,优化设计和设计计算,大大地简化了转炉重心的确定和倾动力矩的计算步骤,通过Solid Edge对转炉本体参数化,有效地提高产品设计的质量和开发的效率。  相似文献   

9.
This paper presents an observer designed under the assumption that differences between predicted and measured outputs arise from discrepancies between the real structural system and the nominal model used to represent it. The observer gain is independent of the assumed model error parametrization and proves to be the transpose of the state to output matrix of a state space formulation. The estimated state with the proposed observer is shown to be identical to that obtained by exciting the nominal model with the known input while adjusting the measured portion of the state to match the measurements at the start of every step. Numerical experiments suggest that the proposed observer can provide state estimates that are substantially more accurate than results predicted by projecting the measurements in a truncated modal space.  相似文献   

10.
Logistic mixed-effects models constitute a natural framework to study longitudinal binary response variables when the question addressed with the data is related to covariate effects within persons. However, the computations of the likelihoods are generally tedious and require the resolution of integrals which have no analytical solution. In this paper, we study a logistic mixed-effects model in a Bayesian framework and use the Gibbs sampler to overcome the current computational limitations. From a study of side-effects occurring during plasma exchanges, we explore the issues of bayesian formulation, model parametrization, choice of the prior distributions, diagnosing convergence, comparison between models and model adequacy. Finally, we show that a Bayesian random-effects model is useful to facilitate prediction.  相似文献   

11.
采用ANSYS有限元软件对硬质合金拉伸模结构进行了优化设计。为了不改变拉伸模的使用功能,保持定径区直径d、定径区高度h不变,将拉伸模结构尺寸进行参数化处理,针对不同型号拉伸模选择合理的优化设计变量。优化设计后,拉伸模变形和最大拉应力相应地减小,延长了拉伸模的使用寿命;拉伸模质量明显减轻,降低了材料成本。在优化设汁中,使用参数化建模,缩短了设计周期,提高了设计效率和设计可靠性.该设计思想对于其他类型结构优化设计也可起到借鉴作用。  相似文献   

12.
Models for the calculation of upper and lower limiting values to the backscatter factor (BSF) are presented. The upper limit is obtained from Monte Carlo simulations of infinite parallel beams incident on semi-infinite phantoms with the dose contributions from all orders of photon scatter considered. The lower limits are calculated using an analytical photon transport model which considers only the primary dose and the scatter dose from photons that have undergone single scattering interactions in the phantom. The limiting values can be used to evaluate measured and modelled BSF values for x-ray beams with photons of < or = 150 keV. A parametrization of the limiting values in terms of photon energy and irradiation field size is presented so that results determined for monoenergetic beams can be extended to polyenergetic spectra. The utility of the limits is illustrated by comparisons made with BSFs from the literature.  相似文献   

13.
We present here an analysis of the airborne radioactivity measured in Italy after the Chernobyl accident. We provide some quality assurance, isolate suspicious data, and devise a mathematical model to aid in interpreting time-dependent fallout data. The model consists of an interpolating function whose parameters can be related to 1) the arrival time of the radioactive cloud; 2) the time of the maximum radioactive concentration; and 3) the decay-rate of airborne radioactivity as the pollutant cloud passes. Multiple arrivals of the radioactive cloud in a given site can also be considered. The parametrization can be used to estimate concentrations of 137Cs using measurements of (131)I, 103Ru, or 132Te. The interpolating function is fitted to the data collected in several Italian Provinces. We feel this model is an useful tool for interpreting time-dependent fallout data.  相似文献   

14.
Dendrites of pyramidal neurons from embryonic rat hippocampus are investigated in culture using a voltage-sensitive fluorescent dye. The electrical response to somatic stimulation is observed as a time-resolved map with a resolution of 0.9 microm at a time constant of 0.4 ms without signal averaging. The data are interpreted in terms of a tapering cable with Hodgkin-Huxley parametrization. The spread of short hyperpolarizing transients is damped by capacitive shunting. The invasion of an action potential is boosted by voltage-gated conductances of a low density. No irregularity is observed at a bifurcation. The passive cable parameters of internal resistance and membrane resistance at resting voltage are Ri = 300 omega cm and Rm = 40 (k)omega cm2 respectively, at a maximum sodium conductance of approximately 4.4 mS/cm2. The electrotonic length constant and the dynamic length constant at 1 kHz are 580 and 90 microm respectively. These results are compatible with electrophysiological data of dendrites in slices of adult hippocampus and with optical data of narrow processes of leech neurons in culture. The functional implications of boosting an action potential by voltage-gated channels of low density are considered.  相似文献   

15.
A high-resolution current profiler (HRCP), which belongs to a pulse-to-pulse coherent Doppler sonar, has been used to measure vertical profiles of turbulence parameters, such as the Reynolds stresses, eddy viscosity, production and dissipation rates, etc., and to test the parametrization of dissipation rate and eddy viscosity. The HRCP and automatic ascending/descending CTD are deployed during the autumn of 2001 for 24 h in a tidal estuary. Reliable velocities along the beams with HRCP are collected with 3 s intervals and a vertical resolution as fine as 0.03 m in the range 0.02–0.98 m above the bottom. Density profiles with the CTD are taken nominally every 30 sec. The turbulent velocity variables depend largely on the tidal phase; the variables during the ebb deviate from those in neutral equilibrium boundary layer. This deviation during the ebb presumably arises from the “inactive motion.” The stability function SM in the Mellor–Yamada (M–Y) model is smaller than 0.39 even when the stratification is negligible during the flood. The constant of proportionality B1 in the dissipation model is larger than 16.6 used in M–Y model. There is room for improving some of the mixing parametrizations in estuarine tidal flows.  相似文献   

16.
Current models of the modulus of elasticity, E, of concrete recommended by the American Concrete Institute and the American Association of State Highway and Transportation Officials are derived for normally vibrated concrete (NVC). Because self-consolidated concrete (SCC) mixtures differ from NVC in the quantities and types of constituent materials, supplementary cementing materials, and chemical admixtures, the current models, may not take into consideration the complexity of SCC, and thus they may predict the E of SCC inaccurately. Although some authors recommend specific models to predict E of SCC, they include only a single variable of assumed importance, namely, the design compressive strength of concrete, fc′. However, there are other parameters that may need to be accounted for while developing a prediction model for E of SCC. In this paper, a Bayesian variable selection method is used to identify the significant parameters in predicting the E of SCC, and more accurate models for E are generated using these variables. The models have a parsimonious parametrization for ease of use in practice and properly account for the prevailing uncertainties.  相似文献   

17.
Terbium doped strontium-lanthanum borate, Sr3La2(BO3)4:Tb (SLB), was studied by semi-empirical computational ap- proaches using PM6 parametrization and the SPARKLE model for lanthanide(Ⅲ) (Ln(Ⅲ)) cations. The focus of interest was on structural aspects, e.g. the cell parameters and distribution of dopant ions between various sites as a function of dopant concentration. The cell linear dimensions were calculated to decrease linearly with increasing dopant molar concentration. SLB offered two sites for the dopant. Calculations predicted that one of these sites should be preferred by the Tb(Ⅲ) dopant. The optimized cell dimensions as well as the total energies differed for structures with dopant exclusively in site 1 or site 2. Computational predictions were tested against experimental results obtained for SLB synthesized by sol-gel method varying the dopant concentration. The agreement be- tween experimental and computational results was found sufficiently promising to continue the computational studies.  相似文献   

18.
We describe the implementation and validation of a combined dynamic-autoradiographic approach for measuring the regional cerebral blood flow (rCBF) with 15O-butanol. From arterial blood data sampled at a rate of 1 s and list mode data of the cerebral radioactivity accumulated over 100 s, the time shift between blood and tissue curves, the dispersion constant DC, the partition coefficient p, and the CBF were estimated by least squares fitting. Using the fit results, a pixel-by-pixel parametrization of rCBF was computed for a single 40-s (autoradiographic) 15O-butanol uptake image. The mean global CBF found in 27 healthy subjects was 49 +/- 8 ml 100 g-1 min-1. Gray and white matter rCBF were 83 +/- 20 and 16 +/- 3 ml 100 g-1 min-1, respectively, with a corresponding partition coefficient p of 0.77 +/- 0.18 and 0.77 +/- 0.29 ml/g in both compartments. The quantitative images resulted in a significantly higher gray matter rCBF than the autoradiographic images.  相似文献   

19.
A two-dimensional (2D) simulation of flooding from the 1928 failure of St. Francis Dam in southern California is presented. The simulation algorithm solves shallow-water equations using a robust unstructured grid Godunov-type scheme designed for wetting and drying and achieves good results. Flood extent and flood travel time are predicted within 4 and 10% of observations, respectively. Representation of terrain by the mesh is identified as the dominant factor affecting accuracy, and an iterative process of mesh refinement and convergence checks is implemented to minimize errors. The most accurate predictions are achieved with a uniformly distributed Manning n = 0.02. A 50% increase in n increases travel time errors to 25% but has little effect on flood extent predictions. This highlights the challenge of a priori travel time prediction but robustness in flood extent prediction when topography is well resolved. Predictions show a combination of subcritical and supercritical flow regimes. The leading edge of the flood was supercritical in San Francisquito Canyon, but due to channel tortuosity, the wetting front reflected off canyon walls causing a transition to subcritical flow, considerably larger depths, and a standing wave in one particular reach that accounts for a 30% fluctuation in discharge. Elsewhere, oblique shocks locally increased flood depths. The 2D dam-break model is validated by its stability and accuracy, conservation properties, ability to calibrate with a physically realistic and simple resistance parametrization, and modest computational cost. Further, this study highlights the importance of a dynamic momentum balance for dam-break flood simulation.  相似文献   

20.
The tetraheme cytochrome c3 from Desulfovibrio vulgaris Hildenborough is studied using molecular dynamics simulation studies in explicit solvent. The high heme content of the protein, which has its core almost entirely made up of c-type heme, presents specific problems in the simulation. Instability in the structure is observed in long simulations above 1 ns, something that does not occur in a monoheme cytochrome, suggesting problems in heme parametrization. Given these stability problems, a partially restrained model, which avoids destruction of the structure, was created with the objective of performing free energy calculations of heme reduction, studies that require long simulations. With this model, the free energy of reduction of each individual heme was calculated. A correction in the long-range electrostatic interactions of charge groups belonging to the redox centers had to be made in order to make the system physically meaningful. Correlation is obtained between the calculated free energies and the experimental data for three of four hemes. However, the relative scale of the calculated energies is different from the scale of the experimental free energies. Reasons for this are discussed. In addition to the free energy calculations, this model allows the study of conformational changes upon reduction. Even if the precise details of the structural changes that take place in this system upon individual heme reduction are probably out of the reach of this study, it appears that these structural changes are small, similarly to what is observed for other redox proteins. This does not mean that their effect is minor, and one example is the conformational change observed in propionate D from heme I when heme II becomes reduced. A motion of this kind could be the basis of the experimentally observed cooperativity effects between heme reduction, namely positive cooperativity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号