首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
 用神经网络模型代替传统的数学模型,达到提高轧制参数预报精度的目的。在分析了轧制原理的基础上设计了神经网络冷连轧参数预报模型,并针对前向网络反向传播算法(BP)收敛速度缓慢和易陷入局部极小点的缺点,将有全局寻优特性的模拟退火算法(SA)与之结合得到具有较快收敛速度和较高逼近精度的神经网络轧制参数预报模型,提高了网络的快速性和精确性。最后以轧制力预报为例,证明了该方法收敛速度快,稳定性好,可信度高,具有较好的应用前景。  相似文献   

2.
基于蚁群算法的神经网络冷连轧机轧制力预报   总被引:1,自引:0,他引:1  
杨景明  孙晓娜  车海军  刘畅 《钢铁》2009,44(3):52-0
 为提高冷连轧机轧制力的预报精度和预报速度,用蚁群算法和神经网络相结合的方法进行轧制力预报模型设计。根据轧制原理建立了BP神经网络冷连轧机轧制力预报模型,以网络权值和阈值为自变量,网络预报误差为目标函数,通过蚁群多代运算,找出预报误差全局最小值,再将相应的权值和阈值输入网络进行训练。应用某厂1450 mm冷连轧机的实测数据进行离线计算的结果表明,该方法能够防止BP网络陷入局部极小点,且收敛速度快,可作为轧制力预报的新方法在实际应用中加以推广。  相似文献   

3.
为了提高轧制力自学习模型的预报精度,将传统自学习模型的预报轧制力及影响轧制力的主要因素作为网络的输入,利用权值更新次数的倒数与单个样本本次激活的地址更新次数倒数和的比作为网络权值更新的信度,建立了基于信度分配的小脑模型CA-CAMC网络与轧制力自学习相结合的轧制力预报模型。通过大量在线数据实验分析,结果表明基于CA-CAMC网络模型的轧制力预报模型的精度高、稳定性好,能够更好地满足实际生产中越来越高的控制精度需求。  相似文献   

4.
为了改善国内某钢铁厂炉卷轧机的轧制力模型的预报精度,提出将结合热模拟实验建立的传统轧制力模型计算值作为Elman神经网络的一个输入项,将传统数学模型预报的轧制力与实测轧制力的相对误差作为此神经网络输出项的方式构建网络模型,通过大量的在线数据分析,这种将神经网络与传统数学模型相结合的方法明显地改善了轧制力的预报精度。该神经网络模型可为以轧制力为主要控制目标的炉卷轧机的过程自动化系统提供可靠的模型参数。  相似文献   

5.
冷连轧机轧制力人工神经网络预报   总被引:2,自引:0,他引:2  
采用改进的BP网络Levenberg-Marquardt优化算法对冷连轧机轧制力进行快速预报,此网络参量可自适应调整,收敛速度快.冷连轧生产轧制力预报精度大为提高,为冷连轧轧制力预报提供了一条准确高效的新途径.  相似文献   

6.
轧制力是影响中厚板厚度精度和板型的关键因素。兴澄特钢中厚板轧机二级模型采用传统Sims公式计算轧制力,精度较低。为提高轧制力预报精度,首先基于大量历史生产数据,通过主成分分析法对影响轧制力的因素进行处理和分析,选出权重较大的影响因子;其次选取现场代表钢种进行热模拟压缩实验,在此基础上提出基于极限学习机(ELM)的综合神经网络轧制力预报模型,即先通过化学成分计算出基准变形抗力,再将其作为轧制力神经网络输入变量进行轧制力预报。建模采用10折10次交叉验证确定最佳网络隐层节点数,并用现场实际生产过程数据对网络进行训练与测试。综合神经网络模型投入现场生产,轧制力预报相对误差±10%以内占比提高15.61%,钢板头部厚度命中率提高1.9%。  相似文献   

7.
摘要:轧制力是影响中厚板厚度精度和板型的关键因素。兴澄特钢中厚板轧机二级模型采用传统Sims公式计算轧制力,精度较低。为提高轧制力预报精度,首先基于大量历史生产数据,通过主成分分析法对影响轧制力的因素进行处理和分析,选出权重较大的影响因子;其次选取现场代表钢种进行热模拟压缩实验,在此基础上提出基于极限学习机(ELM)的综合神经网络轧制力预报模型,即先通过化学成分计算出基准变形抗力,再将其作为轧制力神经网络输入变量进行轧制力预报。建模采用10折10次交叉验证确定最佳网络隐层节点数,并用现场实际生产过程数据对网络进行训练与测试。综合神经网络模型投入现场生产,轧制力预报相对误差±10%以内占比提高15.61%,钢板头部厚度命中率提高1.9%。  相似文献   

8.
在中厚板生产过程中,用传统轧制力模型预报中厚板轧机轧制力时存在着较大的误差.为了提高中厚板轧机轧制力的预报精度,采用轧制力模型自适应与人工神经元网络相结合的方法进行中厚板轧制力的在线预报.应用结果表明,采用本方法预报轧制力时精度优于传统的数学模型,相对误差可以控制在±3%以内.  相似文献   

9.
在深入研究各种数学模型的基础上,建立了适合线材轧制的模型,利用VC++和VB联合开发了高速线材力能预报系统。为了提高软件的预报精度,建立了适合高速线材轧制的短时和长时自适应优化模型。在孔型设计时,利用该软件可以提高各机架轧制力、轧制力矩以及轧制功率的预报精度,为校核孔型设计和选择电机提供了指导和参考。通过仿真和软件在现场试用表明,优化后的模型比原模型具有更高的精度,并且在变钢种变规格轧制时误差波动较小。  相似文献   

10.
为了有效预测双机架炉卷轧机的轧制力,使热轧板带材生产具有很好的可操作性,采用粒子群算法(PSO)优化BP神经网络,建立了往复式双机架炉卷轧机轧制力预测的智能模型。以某钢厂热轧产品Q195实测数据作为试验样本,并将粒子群算法优化的BP神经网络模型和标准BP网络模型分别用于轧制力预测,结果表明PSO-BP神经网络模型在预报精度上明显优于标准BP网络模型,并且PSO-BP神经网络模型预测轧制力的误差率控制在10%以内。  相似文献   

11.
轧制力预测中RBF神经网络的组合应用   总被引:1,自引:0,他引:1  
 传统的数学模型无法达到冷连轧控制的尺寸精度要求。针对传统轧制力模型的固有缺陷,为提高冷连轧机组轧制力计算精度,合理选择、更新和预处理训练样本,采用RBF神经网络预测冷轧带钢屈服应力并把它用于传统轧制力计算模型,获得较高的轧制力预测精度。而后使用RBF长期数据修正网络和RBF短期数据修正网络得到长期数据修正网络和短期数据修正网络的修正系数,对轧制力计算值进一步修正,从而进一步提高轧制力预报精度。上述方法直接用于某冷连轧机组,轧制力预测误差在±6%之内。这充分证明RBF网络可以成功用于轧制过程控制并满足实际生产的需要。  相似文献   

12.
RBF网络优化设计及在轧机轧制力预报中的应用   总被引:3,自引:2,他引:3  
董敏  刘才  李灵锋 《钢铁》2005,40(11):34-36,61
将Hough变换用于RBF神经网络的参数确定中,以自适应地确定RBF网络的隐层节点数和径向基函数的中心值,使得网络结构及参数得到优化,提高了RBF神经网络的收敛速度和泛化能力。将此改进的RBF神经网络应用于冷轧过程轧制力的预测中,试验结果表明经过优化设计的网络模型具有高的输出精度,使得轧制力预报这种受多种因素影响的复杂系统的输出预报问题得到了很好的解决。  相似文献   

13.
 以4200 mm轧机轧制71块钢板的实测数据为基础,利用Matlab神经网络工具箱,分别建立了轧制变形区的应力状态系数与轧前厚度、轧后厚度及轧辊直径对应关系的Elman神经网络预测模型和RBF神经网络预测模型。结果表明,所建立的两种网络模型均建立了金属应力状态系数输入和输出关系,RBF神经网络模型比Elman网络模型数据稳定,性能更优,实现了与实测结果的高度拟合。并得出不同轧辊直径对神经网络模型精度的影响规律,对轧制工艺规程的制定提出了合理建议。  相似文献   

14.
过程控制系统要求数学模型能正确反映规律性,运算简单,并且有较高的预报精度。轧制力计算模型是过程控制数学模型的核心,轧制力的计算精度直接影响到板形与板厚控制的精度。为了提高轧制力计算的精度,通过对冷轧轧制力特点的分析和计算模型的研究,我们在现有Hill公式的基础上,考虑张力对计算冷轧带钢轧制力的影响并借助于自学习计算功能,通过添加张力影响因子和模型自学习系数对Hill公式进行了改进,在保证轧制力预报精度的同时实现轧制力的在线计算。实际数据测试结果表明轧制力在线计算模型的预报精度误差在±5%以内。  相似文献   

15.
在双辊铸轧过程中,铸轧力的控制是铸轧过程稳定进行和提高薄带质量的关键.为了控制铸轧力,必须建立铸轧力计算数学模型,本文采用了一种基于贝叶斯方法的前向神经网络训练算法以提高网络的泛化能力,在网络的目标函数中引入了表示网络结构复杂性的惩罚项,融入"奥克姆剪刀"理论,避免了网络训练的过拟合.将上述网络应用于铸轧过程的铸轧力计算,具有很高的计算精度,同时在收敛速度、稳定性和泛化能力方面都优于传统的BP神经网络.  相似文献   

16.
基于遗传神经网络的不锈钢带冷轧轧制力模型   总被引:2,自引:0,他引:2  
张清东  徐兴刚  于孟  瞿标  李实 《钢铁》2008,43(12):46-0
 为了提高工厂从国外引进的以Bland Ford公式为基础的冷轧不锈钢带轧制力模型的计算精度,将基于遗传算法的BP神经网络与现有变形阻力和轧制压力解析数学模型相结合,建立了变形阻力和轧制压力修正模型。将在生产现场采集的部分过程记录数据,进行分类和预处理后作为训练样本用于训练遗传神经网络模型。将其他现场实测数据用于验证所建的轧制力模型,计算结果表明所建的轧制力模型具有较高的计算精度。  相似文献   

17.
变异PSO算法协同神经元网络在轧制力预报中的应用   总被引:1,自引:0,他引:1  
 为了避免BP神经元网络易陷入局部极值和基本粒子群(PSO) 神经元网络早熟收敛问题,采用一种自适应变异的粒子群优化算法训练神经元网络,根据轧制力的实测值和神经元网络的预报值确定粒子群算法的适应度函数,按照权重梯度方向进行变异操作,并首次将该方法应用到热连轧机组轧制力预报中。通过攀钢热轧板厂现场数据运算表明,该方法的预报误差平均值比传统数学模型低165%,比BP神经元网络低055%,收敛速度比BP神经元网络提高了约1/4,为进一步提高精轧机组轧制力预报精度提供了一种新的有效方法。  相似文献   

18.
基于神经网络的轧制力模型参数辨识   总被引:4,自引:0,他引:4  
为了提高热连轧轧制力预设定值的精度,提出卫种新的轧制力模型参数辨识方法。利用人工神经网络对以往的大量生产数据进行了训练、预测、将预测结果结合轧制力模型,对思制力模型中的温度相关关系数m1、变形速度相关系数m3进行只。现场生产实践表明,采用辨识后的模型进行轧制力预设定,带钢头部厚度精度有明显提高。对于象本钢热连轧厂这样的老企业,这种新方法更具有在线应用的可行性。  相似文献   

19.
攀枝花钢铁(集团)公司热轧板厂三期技术改造后,精轧设定模型精度受粗轧中间坯厚度、宽度和温度等参数影响较大,造成轧制参数预报精度下降,为此,于2007年采用精轧自适应穿带模型对轧制力、辊缝、轧制速度进行补偿,提高精轧设定模型对轧制力、出口厚度等轧制参数的预报精度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号