首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Previous studies have indicated that certain members of the cyclin-dependent kinase/mitogen-activated protein kinase superfamily are involved in apoptosis of neuronal cells. Here, we have examined programmed cell death induced by withdrawal of neurotrophic support from CNS (rat retinal) and PNS (chick sympathetic, sensory, and ciliary) neurons. All four neuron types were equally rescued by the purine analogues olomoucine and roscovitine. Olomoucine inhibits multiple cyclin-dependent and mitogen-activated protein kinases with similar potency. Roscovitine is a more selective cyclin-dependent kinase inhibitor; but, so is butyrolactone I, which did not prevent retinal ganglion cell death. The specific p38MAPK inhibitor SB-203580 did not prevent apoptosis in retinal ganglion cells. Death of these cells in the absence of neurotrophic factors was accompanied by morphological changes indicative of apoptosis, including nuclear condensation and fragmentation. Treatment with olomoucine or roscovitine not only prevented these apoptotic changes in retinal ganglion cells but also blocked neurite outgrowth. The survival-promoting activity of olomoucine correlated with its in vitro IC50 for c-Jun N-terminal kinase-1 and its potency to repress c-jun induction in live PC12 cells. Roscovitine was more potent in rescuing neurons than in inhibiting Jun kinase. Thus, the antiapoptotic action of roscovitine might be due to inhibition of additional kinases.  相似文献   

3.
The effect of a calpain-selective cell permeant inhibitor, benzyloxycarbonyl Leu-Leu-Tyr diazomethylketone (ZLLY-CHN2), on the serum-stimulated growth of WI-38 human fibroblasts has been investigated. Only cell permeant protease inhibitors with activity against calpains prevented progression into S-phase. Protein blotting experiments indicated that p53 immunoreactivity increased in late G1 cells treated with ZLLY-CHN2. The content of p21Waf1/Cip1 CDK inhibitor also increased, providing a mechanism for the observed failure to enter S-phase. Further studies indicated that p53 could be degraded by a ZLLY-CHN2-sensitive protease immediately prior to S-phase, but that proteolysis did not occur after this critical time point. Chelation of extracellular Ca2+ by addition of EGTA inhibited the p53 degradation. Consistent with proteolysis of p53 in late G1 phase, mu-calpain immunoreactivity transiently accumulated in cell nuclei at this time. ZLLY-CHN2 did not appear to increase p53 mRNA in WI-38 cells. Purified mu-calpain required only 1 to 3 microM Ca2+ to proteolyze p53 in WI-38 cell lysates. These results indicate that ZLLY-CHN2 inhibits progression of WI-38 cells into S-phase by inactivating a calpain-like protease that is responsible for proteolysis of constitutively expressed p53 in late G1.  相似文献   

4.
We have studied the effects of olomoucine, a selective inhibitor of cdk2, cdc2 and MAP kinase, on the rate of proliferation and the cell cycle progression in human cancer cells in culture. Olomoucine inhibited the growth of the KB 3-1, MDA-MB-231 and Evsa-T cell lines in a concentration-dependent manner, with EC50 values of 45, 75 and 85 microM, respectively. Incubation of exponentially growing KB 3-1 cells in the presence of olomoucine led to an increased proportion of cells in G1 phase after 24 h or more of incubation. Olomoucine failed to rapidly affect the phosphorylation of the Rb tumor-supressor gene product. However, [3H]thymidine incorporation into the cell DNA was rapidly inhibited. We show that this inhibition is due, at least in part, to the diminution of thymidine entry into the cells. Surprisingly, all these cell lines, when synchronized at the G1/S interface and relaxed in the presence of olomoucine, progressed unhindered through the S phase. Under these conditions, the G2 phase transit was markedly retarded but not prevented. Insufficient permeability of the cell membrane to olomoucine may explain the low activity of the drug.  相似文献   

5.
Despite a growing understanding of the biochemical mechanisms controlling the cell cycle, information regarding the temporal ordering of S phase and M phase remains scarce. Polyploid cells represent a useful model for examining S- and M-phase control, because their cell cycle machinery must be modulated to retain high levels of DNA content (ploidy) within a single nucleus. To evaluate the mechanisms of S-phase control during the process of polyploidization, we investigated the modulations that occur in cyclin-dependent kinase (CDK) complexes during the induction of megakaryocyte differentiation in human erythroleukemia cells. We report that during polyploidization, megakaryocytic human erythroleukemia cells undergo a dramatic modulation in the subunit composition of G1-associated and S phase-associated CDK complexes and a marked increase in their specific activities. This, in turn, is facilitated by a differential loss of the p21 or p27 CDK-inhibitory protein/kinase-inhibitory proteins (CIP/KIP) bound to specific cyclin/CDK complexes. The data show that the loss of S- and M-phase control in polyploid cells occurs within the context of an up-regulated function in those CDK complexes associated with both G1-S-phase transit and S-phase progression. Additional studies regarding the regulation of these complex CDK interactions will be important to understand cell cycle control in such diverse processes as megakaryocyte differentiation or the types of genomic instability that occur in cancer cells.  相似文献   

6.
The activity of cyclin-dependent kinase 2 (CDK2) is essential for progression of cells from G1 to the S phase of the mammalian cell cycle. CVT-313 is a potent CDK2 inhibitor, which was identified from a purine analog library with an IC50 of 0.5 microM in vitro. Inhibition was competitive with respect to ATP (Ki = 95 nM), and selective CVT-313 had no effect on other, nonrelated ATP-dependent serine/threonine kinases. When added to CDK1 or CDK4, a 8.5- and 430-fold higher concentration of CVT-313 was required for half-maximal inhibition of the enzyme activity. In cells exposed to CVT-313, hyperphosphorylation of the retinoblastoma gene product was inhibited, and progression through the cell cycle was arrested at the G1/S boundary. The growth of mouse, rat, and human cells in culture was also inhibited by CVT-313 with the IC50 for growth arrest ranging from 1.25 to 20 microM. To evaluate the effects of CVT-313 in vivo, we tested this agent in a rat carotid artery model of restenosis. A brief intraluminal exposure of CVT-313 to a denuded rat carotid artery resulted in more than 80% inhibition of neointima formation. These observations suggest that CVT-313 is a promising candidate for evaluation in other disease models related to aberrant cell proliferation.  相似文献   

7.
8.
The antimicrotubule anticancer drug, Taxol, suppresses microtubule dynamics, causes mitotic arrest, and induces caspase-3 cleavage and activity resulting in apoptosis of human AML HL-60 cells. Caspase-3 cleavage is triggered by the mitochondrial release and cytosolic accumulation of the electron transfer protein, cytochrome c (cyt c). Taxol-induced G2/M transition is mediated by p34(cdc-2) (CDK1) which, if prematurely activated, may also trigger apoptosis. In the present studies following S-phase synchronization and release, HL-60 cells with enforced expression of the bcl-xL (HL-60/Bcl-xL) and/or neomycin resistance gene (HL-60/neo) were exposed to Taxol to examine CDK1-related cell-cycle events and the cyt c-triggered molecular cascade of apoptosis. At various time-intervals after Taxol treatment, immunoblot analyses of cyclin B1 and CDK1 levels were performed. In addition, the in vitro histone H1 kinase activity of immunoprecipitated CDK1 and its tyrosine phosphorylation status (by anti-phosphotyrosine immunoblot analysis) were determined. Data presented here show that, while Taxol-induced peak CDK1 kinase activity occurs earlier in HL-60/neo cells, there are no significant differences in cyclin B1 accumulation, tyrosine dephosphorylation of CDK1, and mitotic arrest of Taxol-treated HL-60/neo vs HL-60/Bcl-xL cells. Taxol-induced CDK1 activation and mitosis preceded the cytosolic accumulation (approximately six-fold) of cyt c. The latter event was blocked by Bcl-xL overexpression but not by inhibitors of caspase-3. Although the caspase inhibitors and high Bcl-xL levels inhibited caspase-3 cleavage and activity, they did not significantly affect Taxol-induced CDK1 activation or mitotic arrest. These findings indicate that Bcl-xL overexpression does not affect Taxol-induced CDK1 activity leading to G2/M transition, which temporally precedes the cytosolic cyt c-mediated cleavage and activity of caspase-3 and apoptosis.  相似文献   

9.
Paclitaxel induces a cell cycle block at G2-M phase by preventing the depolymerization of microtubules and induces p53-independent apoptosis in many cancer cells. We observed that gastric cancer cells treated with paclitaxel have shown a cyclin-dependent kinase (CDK)4 down-regulation. This paclitaxel-induced CDK4 down-regulation resulted in a cell cycle arrest at G1-S phase. To confirm this observation, we prepared stable transfectants that overexpressed CDK4 and analyzed the cell cycle progression. Ectopic expression of CDK4 in SNU cells resulted in a release of paclitaxel-induced G1 arrest. The release of G1 arrest by enforced expression of CDK4 seems to make the cells more sensitive to paclitaxel-induced apoptosis. From this finding, we could then suggest that paclitaxel treatment induces both G1-S and G2-M blocks in the cell cycle progression of gastric cancer cells.  相似文献   

10.
We have investigated the effect of the anticancer compound, camptothecin on Jurkat T-cells, a lymphoblastoid leukemic cell-line. Exposure to low concentrations led to rapid cessation of DNA (more than 95%) and RNA (more than 75%) synthesis. Perturbations to the cell cycle were observed following exposure which caused a significant accumulation of cells within G1 (P = 0.03) with a concomitant decrease in G2/M (P = 0.025). Concentrations below 0.1 microM could inhibit DNA synthesis but not induce apoptosis. Induction of apoptosis was dose dependent and could be detected as early as 3 h post exposure. The apoptotic population appeared to be derived from G1 and S-phase cells but not G2/M, coinciding with the cell cycle compartments in which DNA and RNA polymerases function. However, direct inhibition of DNA polymerase alone was not shown to be associated the induction of apoptosis or with a decrease in susceptibility to camptothecin-induced cell death. The effects of camptothecin on Jurkat T-cells and the potential mechanisms involved are discussed in the context of observations made in other transformed cell lines.  相似文献   

11.
We investigated 1,2-dibromo-3-chloropropane (DBCP)-induced DNA damage, cell cycle alterations and cell death in two cell lines, the human leukemia HL-60 and the pig kidney LLCPK1, both of which are derived from potential target sites for DBCP-induced toxicity. DBCP (30-300 micromol/L) caused a concentration-dependent increase in the levels of DNA single-strand breaks in both cell lines as well as in cultured human renal proximal tubular cells. After extended DBCP exposure in LLCPK1 cells (100 micromol/L, 30 h), the level of DNA breaks returned almost to control values. Incubation for 48 h showed a clear reduction of growth with DBCP concentrations as low as 10 micromol/L. Flow cytometric analysis showed that DBCP (1-10 micromol/L) exposure for 24 h caused an accumulation of LLCPK1 cells in the G2/M-phase. In HL-60 cells the accumulation in G2/M-phase was less marked, and at higher concentrations the cells accumulated in S-phase. Flow cytometric studies of HL-60 and LLCPK1 cells exposed to 100-500 micromol/L DBCP showed increased number of apoptotic cells/bodies with a lower DNA content than that of the G1 cells. Microscopic studies revealed that there were increased numbers of cells with nuclear condensation and fragmentation, indicating that apoptosis was the dominant mode of death in these cell lines, following exposure to DBCP. The characteristic ladder pattern of apoptotic cells was observed when DNA from DBCP-treated HL-60 cells and LLCPK1 cells was electrophoresed in agarose. The finding that DBCP can cause an accumulation of cells in G2/M-phase and induce apoptosis in vitro may be of importance for the development of DBCP-induced toxicity in vivo.  相似文献   

12.
We investigated the effects of two sex steroids (17beta estradiol and testosterone) on five human leukemia cell lines. We observed a statistically significant inhibition of proliferation, dose and time dependent, of the human monoblastic leukemia cell line U937. This inhibition was associated with a dose dependent decrease in the number of CFU-blasts in clonogenic cultures. Cytostatic effect was obtained with doses of 5 microM for estrogen and 10 microM for androgen and was not due to a non-specific cytotoxic effect, some cell viability remained high (> 90%) even after 6 days of incubation. More accurately, we demonstrated that growth inhibition was associated with a cell cycle arrest, U937 cells accumulating in G2/M phase. This blockade was dose related with a maximum number of cells accumulating at day 4. Sensitivity of these cells to an S-phase specific agent (hydroxyurea) was not increased, suggesting that these cells were blocked in G2/M and did not undergo mitosis. Expression in U937 cells of high affinity nuclear receptors for estrogen and androgen was negative which was in favour of a type II estrogen binding site, mediated mechanism. Moreover, a small fraction of these cells underwent apoptosis or differentiation with about 12% apoptotic cells and a significant increase (more than 30%) of two myelomonocytic markers (CD13 and CD64). These results demonstrate that the proliferation of some leukemic cells may be inhibited by micromolar concentrations of sex steroids, independently of nuclear receptor expression. The main mechanism seems to be a block in cell cycle associated with modulation of apoptosis and differentiation. It provided additional evidence for the potential value of sex steroids and their analogues in the treatment of leukemias.  相似文献   

13.
14.
Anti-idiotype (anti-Id) antibody can induce tumor dormancy in a murine B lymphoma, BCL1, by its ability to induce cell cycle arrest and apoptosis (negative signaling). In human B lymphoma, there is accumulating evidence that the antitumor effect of anti-Id or several other B cell-reactive antibodies relates to their ability to act as agonists rather than conventional effector antibodies. In this study, we sought to elucidate the role of cyclins, cyclin-dependent kinases (CDKs), and their inhibitors in anti-IgM-induced cell cycle arrest to better understand the mechanisms underlying cancer dormancy. To accomplish this, we have performed in vitro studies with a human lymphoma cell line (Daudi) because its response to anti-Id (or anti-IgM) is similar to that of a BCL1 cell line, more reagents are available, and the results would be particularly pertinent to therapy of human B cell lymphomas. Our results show that cross-linking of membrane IgM on Daudi cells induces an arrest late in G1 and prevents pRb from becoming phosphorylated. The G1 arrest is correlated with an induction of the CDK inhibitor p21 and reduced CDK2 activity, although the level of CDK2 protein was not changed. Coprecipitation of CDK2 with p21 in anti-IgM-treated cells and the unchanged level of cyclin E suggest that p21 is responsible for the reduction of CDK2 activity and therefore blockade of the cell cycle. The induction of p21 was not accompanied by changes in p53 levels. As a result of the G1 block, cyclin A levels sharply declined by 24 h after anti-IgM treatment. There was no evidence for involvement of CDK4 or CDK6 in the blockade. These results provide evidence that membrane IgM cross-linking on Daudi cells induces expression of p21 and a subsequent inhibition of the cyclin E-CDK2 kinase complex resulting in a block to pRb phosphorylation and cell cycle arrest late in G1.  相似文献   

15.
There is an increasing interest in identifying potent cancer preventive and therapeutic agents against breast cancer. Silymarin, a flavonoid antioxidant isolated from milk thistle, exerts exceptionally high to complete anticarcinogenic effects in tumorigenesis models of epithelial origin. In this study, we investigated the anticarcinogenic effect of silymarin and associated molecular mechanisms, using human breast carcinoma cells MDA-MB 468. Silymarin treatment resulted in a significantly high to complete inhibition of both anchorage-dependent and anchorage-independent cell growth in a dose- and time-dependent manner. The inhibitory effects of silymarin on cell growth and proliferation were associated with a G1 arrest in cell cycle progression concomitant with an induction of up to 19-fold in the protein expression of cyclin-dependent kinase (CDK) inhibitor Cip1/p21. Following silymarin treatment of cells, an incremental binding of Cip1/p21 with CDK2 and CDK6 paralleled a significant decrease in CDK2-, CDK6-, cyclin D1-, and cyclin E-associated kinase activity with no change in CDK2 and CDK6 expression but a decrease in G1 cyclins D1 and E. Taken together, these results suggest that silymarin may exert a strong anticarcinogenic effect against breast cancer and that this effect possibly involves an induction of Cip1/p21 by silymarin, which inhibits the threshold kinase activities of CDKs and associated cyclins, leading to a G1 arrest in cell cycle progression.  相似文献   

16.
Apoptotic cell death induced by cross-linking Fas receptor (FasR/CD95) has been investigated in human acute myelogenous leukemia (AML) cells. FasR-mediated growth inhibition and DNA fragmentation could be induced in certain cases of AML. Interestingly, when DNA synthesis and G1 -> S transition in the cell cycle were enhanced by interleukin-3 or granulocyte-macrophage colony-stimulating factor, Fas-insensitive blast cells acquired cellular susceptibility toward FasR-mediated growth inhibition. To further evaluate an association between the Fas-R-mediated action and a specific phase of the cell cycle, a FasR+ leukemic cell line, MML-1, was established from a patient with AML. The morphologic feature of dying cells and DNA fragmentation indicated that FasR cross-linking induced apoptotic cell death in MML-1 cells. Cell cycle arrest in G1A phase with the treatment of phorbol 12-myristate 13-acetate or thymidine rendered MML-1 cells resistant to FasR-mediated apoptosis without downregulation of surface FasR expression. However, S-phase arrest with 5-fluorouracil could neither enhance nor inhibit FasR-mediated apoptosis. Simultaneous DNA/RNA quantification analysis revealed the selective loss of cells in G1B compartment, accompanied by the increase of apoptotic nuclei in sub-G1 fraction. These findings suggested that FasR-mediated apoptotic signals could be transduced into cells in G1B compartment and G1A -> G1B transition might augment the induction of FasR-mediated apoptosis.  相似文献   

17.
In hematopoietic cells, gamma-irradiation causes a p53-dependent transient G1 phase cell cycle arrest. Various extracellular growth inhibitory signals elicit G1 arrest by targeting CDK4. Here we show that in a myeloid cell line, 32D cl 3, enforced expression of CDK4, but not cyclins D2 nor D3, overrides the gamma-irradiation-induced G1 arrest. CDK4 does not confer resistance to the radiation-induced G2 block observed in parental cells. Ectopic expression of CDK4 overcomes the ionizing radiation-induced inhibition of CDK4 and CDK2 kinase activity. The levels of CDK4 protein do not change after exposure to ionizing radiation in either parental cells or those overexpressing CDK4. Ionizing radiation induces the expression of both p53 and p21, and in cells constitutively synthesizing exogenous CDK4, the return of p53 protein levels to baseline is prolonged. Increased levels of p21 are found associated with CDK4, and not CDK2, in the lines overexpressing CDK4, compared to the parental line, after exposure to ionizing radiation. Enforced expression of CDK4 may therefore overcome a gamma-irradiation-induced G1 arrest through the titration of the CDK inhibitor p21 allowing both CDK4 and CDK2 to remain active.  相似文献   

18.
The activation of conditional alleles of Myc induces both cell proliferation and apoptosis in serum-deprived RAT1 fibroblasts. Entry into S phase and apoptosis are both preceded by increased levels of cyclin E- and cyclin D1-dependent kinase activities. To assess which, if any, cellular responses to Myc depend on active cyclin-dependent kinases (cdks), we have microinjected expression plasmids encoding the cdk inhibitors p16, p21 or p27, and have used a specific inhibitor of cdk2, roscovitine. Expression of cyclin A, which starts late in G1 phase, served as a marker for cell cycle progression. Our data show that active G1 cyclin/cdk complexes are both necessary and sufficient for induction of cyclin A by Myc. In contrast, neither microinjection of cdk inhibitors nor chemical inhibition of cdk2 affected the ability of Myc to induce apoptosis in serum-starved cells. Further, in isoleucine-deprived cells, Myc induces apoptosis without altering cdk activity. We conclude that Myc acts upstream of cdks in stimulating cell proliferation and also that activation of cdks and induction of apoptosis are largely independent events that occur in response to induction of Myc.  相似文献   

19.
Telomerase, a ribonucleoprotein that adds telomeric repeats onto chromosome ends, is involved in telomere length maintenance and permits unlimited cell proliferation. We examined the possibility that higher telomerase activity is associated with the replicative phase of the cell cycle using gastric cancer cell lines treated with anticancer drugs. Telomerase activity increased at the time point of S-phase accumulation in NUGC-3 cells (5 x 10(5) cells/ml) incubated with CDDP (0.5 microgram/ml), paclitaxel (0.01 microM), or VP-16 (1 microM) and in MKN-28 cells incubated with CDDP. When these cell lines were incubated with 5-fluorouracil (10 microM) or CPT (0.1 microM), the increase of telomerase activity preceded the S-phase accumulation. Our results suggest that telomerase activity be regulated by the cell cycle.  相似文献   

20.
BACKGROUND: The mechanisms of cyclosporine (CsA)-induced nephrotoxicity are not fully understood. While hemodynamic changes may be involved in vivo, there is also some evidence for tubular involvement. We previously showed direct toxicity of CsA in the LLC-PK1 renal tubular cell line. In the current study we examined mechanisms (apoptosis or necrosis) of cell death induced by CsA in the LLC-PK1 renal proximal tubular cell line. The possible role of the Fas (APO-1/CD95) antigen-Fas ligand system in the mediation of CsA-induced cell death was also investigated. METHODS: Cells were treated with CsA (0.42 nM to 83 microM) for 24 hours and alterations in DNA and protein synthesis and membrane integrity were examined. Flow cytometry was used to investigate: (i) alterations in the DNA content and cell cycle; (ii) the forward (FSC) and side (SSC) light scattering properties (indicators of cell size and granularity, respectively); (iii) the externalization of phosphatidylserine (PS) as a marker of early apoptosis using FITC-annexin V binding; and (iv) expression of the apoptotic Fas protein. DNA fragmentation in apoptotic cells was also determined by the TUNEL assay. RESULTS: CsA (all doses) caused a block in the G0/G1 phase of the cell cycle as indicated by a decrease in DNA synthesis and supported by an increase in the % of cells in the G0/G1 phase with concurrent decreases of those in the S and G2/M phases. The effect on protein synthesis appeared to be much less. Lower doses of CsA (4.2 nM) caused the appearance of a "sub-G0/G1" peak, indicative of reduced DNA content, on the DNA histogram that was paralleled by a reduction in cell size and an increased cell granularity and an increase in FITC-annexin V binding. DNA fragmentation was evident in these cells as assessed using the TUNEL assay. Higher doses of CsA increased cell size and decreased cell granularity and reduced membrane integrity. Expression of Fas, the cell surface molecule that stimulates apoptosis, was increased following low dose CsA exposure. CONCLUSIONS: These results indicate that CsA is directly toxic to LLC-PK1 cells with reduced DNA synthesis and cell cycle blockade. The mode of cell death, namely apoptosis or necrosis, is dose dependent. Fas may be an important mediator of CsA induced apoptosis in renal proximal tubular cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号