首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
云南某铁铜矿选矿试验研究   总被引:2,自引:1,他引:1  
乔吉波 《云南冶金》2009,38(2):29-31
针对云南某铁铜矿矿石进行了原矿磁选-磁选尾矿再浮选的流程试验研究。通过试验得到了铁品位67.93%、铁回收率57.28%的铁精矿和铜品位20.79%、铜回收率80.02%的铜精矿,有价元素得到了有效回收。  相似文献   

2.
通过实验室试验,对牙买加赤泥分别进行了直接还原-磁选和磁化焙烧-磁选两种工艺方案的提铁实验研究。试验结果表明:采用磁化焙烧-磁选工艺方案,最终得到的铁精矿品位最高为31.84%,铁回收率最高57.46%;采用直接还原-磁选工艺方案,最终得到的金属化铁粉的铁品位最高34.62%,金属化率42.20%,铁回收率最高65.04%。  相似文献   

3.
酒钢选矿厂排出的镜铁矿强磁选尾矿铁品位约为28%,有较高的回收价值。为回收其中的铁矿物,本研究基于该强磁选尾矿工艺矿物学,对其进行反浮选—磁化焙烧—磁选试验研究。研究结果表明:该强磁尾矿经过一粗一精的反浮选试验流程,可得到铁品位为43.88%的浮选精矿,其作业铁回收率为50.93%。经过磁化焙烧后得到焙砂,焙砂进行一粗一精的磁选试验后可得到铁品位为62.37%的磁选铁精矿,其作业铁回收率为83.39%。  相似文献   

4.
根据玉溪某低品位铁矿的矿石特点,进行了直接磁选试验、永磁干式磁选机预先抛尾-磁选的工艺流程试验,这两个工艺流程均可以有效回收矿石中的铁,最终确定了矿石适宜的选矿工艺,并得到了铁品位57.12%、铁回收率50.12%铁精矿的选矿指标。  相似文献   

5.
复杂钼铜铁多金属矿的综合利用研究   总被引:3,自引:0,他引:3  
对某钼铜铁多金属矿矿石进行了工艺矿物学研究,该矿石是以钼为主、并生铜铁的多金属矿.根据矿石的性质,采用钼铜混合浮选混合精矿再分离-尾矿磁选选铁的工艺流程.铜钼混合浮选时,采用煤油、柴油混合捕收剂,有利于提高钼回收率,采用选铜特效捕收剂BK802,有利于提高铜的回收率.铜钼混合精矿分离时,采用煤油作为捕收剂,最终选择BK310进行铜钼分离.对铜钼混选尾矿进行了选铁实验,最适宜的磁场强度为0.12~0.16 T之间.研究结果表明:在原矿铜品位0.082%的情况下,可以得到含铜品位15.16%、铜回收率80.54%的铜精矿;采用新型抑制剂BIC310,一次分离三次精选即得到钼精矿钼品位50.87%,回收率85.94%;磁铁矿单体解离较好,一次粗选后再磨,得到铁精矿铁品位69.47%、铁回收率41.89%的铁精矿.  相似文献   

6.
对铜陵某铜尾矿选矿综合回收进行了试验研究。在工艺矿物学研究的基础上,采用尾矿预先分级-粗粒磨矿-浮选-磁选工艺流程,可得到铜精矿铜品位为9.5%,回收率为33.7%,铜精矿含金4.70g/t、银158.4g/t,铁精矿铁品位66.22%、回收率16.85%、含硫0.26%。使尾矿资源得到充分利用,企业的可持续发展状况也将得以改善。  相似文献   

7.
《黄金》2015,(9)
新疆某铜铅锌矿属于难选低品位多金属硫化矿,原矿铜品位0.15%、铅品位3.52%、锌品位1.24%。针对该矿石性质,试验采用铜铅混合浮选—铜铅分离—铜铅尾矿选锌—锌尾矿再磁选铁的浮选流程,可获得铜品位22.30%、铜回收率68.63%的铜精矿,铅品位58.67%、铅回收率86.83%的铅精矿,锌品位42.85%、锌回收率65.32%的锌精矿,及品位67.0%的铁精矿,全铁回收率62.97%(对磁性铁的回收率为97.52%),闭路产品全部达到国家质量标准要求。  相似文献   

8.
《黄金》2015,(10)
某难选金矿矿石中伴生有铜、铁等有价元素,为了充分利用矿产资源,对该矿石进行了选矿综合回收试验研究。其结果表明:通过采用活化剂AS-2活化浮选铜、浮选尾矿细磨预处理—氰化浸金工艺,可获得铜品位14.32%、回收率58.64%的铜精矿,金总回收率达到83.12%;氰化尾矿采用磁选回收磁铁矿并浮选脱硫,可得到铁品位62%以上的磁铁矿精粉和硫品位28%以上的硫铁矿精粉。该工艺流程有效地回收了矿石中的有价金属元素。  相似文献   

9.
针对高硫高铁复杂铜矿石性质的特点,采用铜浮选(粗精矿再磨)-磁黄铁矿磁选-硫浮选的磁浮联合工艺流程,关键技术是低碱优先浮铜和磁选脱除磁黄铁矿,有效解决黄铜矿与(磁)黄铁矿分选的技术难题.试验室小型闭路试验获得了铜品位21.77%、铜回收率81.49%的铜精矿,硫品位32.21%、铁品位48.57%、硫回收率29.28%的磁黄铁硫精矿,硫品位43.45%、硫回收率54.03%的硫精矿,总硫回收率达83.31%.  相似文献   

10.
阐述冶炼铜渣选铜尾矿综合回收铁的工艺研究,确定采用原矿先浮铜,尾矿经磁选得到铁粗精矿,粗精矿加入分散剂再磨再磁选铁的流程,通过分散剂种类对比实验得出NSF分散剂效果最好,3次磁选得到铁的品位52.21%,铁精矿回收率为38.09%,Si02的品位为13.2%的试验指标,实现了炉渣中铁的综合利用.  相似文献   

11.
董方  高利坤  陈龙  王鹏  马方通 《黄金》2016,(6):53-57
锌窑渣通常含有大量炭粉和许多有价金属元素。云南某锌窑渣中含碳22.31%、铜1.33%、银294 g/t、铁23.41%等有价元素,具有较高的回收利用价值。针对该锌窑渣的性质,进行了浮选—磁选联合工艺试验研究。其结果表明:该工艺可获得碳品位78.55%、碳回收率92.60%的炭粉,铜品位8.13%、铜回收率78.61%、含银1 890 g/t的铜精矿以及铁品位66.02%、铁回收率76.33%的铁精矿,且均实现了较高的回收率。  相似文献   

12.
丘盛华  聂光华  涂威 《云南冶金》2011,40(1):31-34,39
主要对广西某褐铁矿进行选矿试验研究,针对该矿石铁品位相对较高,含S、P成分少的性质,采用了单一重选、磁选及氧化焙烧-强磁选和还原焙烧-弱磁选工艺进行了试验研究。结果表明,采用单一摇床重选或强磁选,精矿铁品位和回收率都低,选别效果较差;采用氧化焙烧-强磁选工艺,氧化焙烧可以把原矿品位提高到57%,强磁选对提高矿石品位效果较差;采用还原焙烧-弱磁选工艺效果较好,可获得品位为59.77%、回收率为77.24%铁精矿。  相似文献   

13.
为了从某公司铜炉渣浮选尾矿中有效回收铁,分析了浮选尾矿炉渣的性质,研究了直接磁选、高场强粗选抛尾及粗精矿再磨再选、低场强粗选抛尾及粗精矿再磨再选三种工艺。试验结果表明,通过上述三种工艺,铜炉渣中的铁可以有效回收。通过经济分析比较,推荐采用直接磁选方案,可获得铁品位49.85%、回收率13.02%的矿精铁。  相似文献   

14.
在对某铜尾矿多元素、矿物组成和铁物相分析结果基础上,针对磁性铁和钙铁榴石分别进行了磁选、重选探索试验,重-磁和弱磁-强磁联合回收工艺对比研究。结果表明:采用弱磁-强磁联合工艺,磁性铁品位65.40%、回收率11.12%,钙铁榴石精矿品位为92.88%,回收率74.12%,综合产率达到70.93%。  相似文献   

15.
对高炉灰进行了磨矿和磁选试验试验,结果表明,在磨矿细度-200目占83%的情况下,磁选能得到铁品位56%,回收率44%的铁精粉,该铁精粉再经过螺旋溜槽选别可以提高铁品位2%~3%个点。通过上述工艺,从高炉灰中提取的铁精粉和富锌料品质均能满足返回钢厂再利用和下游客户需要,具有较高的推广和应用价值。  相似文献   

16.
酒钢选烧厂排出尾矿中尚含有25%左右的铁,具有较高的回收价值。该尾矿中铁主要赋存于赤褐铁矿中,其次赋存于菱铁矿和磁铁矿中。为了回收尾矿中的铁,以兰炭作为还原剂,对该尾矿分别进行了磁化焙烧—弱磁选和强磁选—磁化焙烧—弱磁选研究,结果表明,未经强磁选预处理时,可得到铁品位54.50%,铁回收率86.26%的最优指标,该指标与目前现场指标接近;经强磁选处理后,可得到铁品位53.96%,铁回收率80.22%的最优指标,此流程在铁品位和回收率下降不多的前提下大大减少了焙烧和后磁选过程处理量,减少了能源的损失。  相似文献   

17.
宋翔宇 《黄金》2012,33(4):39-42
云南某矿氰化尾矿中含有金铜铅铁等有价元素。为了充分利用矿产资源,对该氰化尾矿进行了选矿综合回收试验研究。试验结果表明:通过提高磨矿细度和延长浸出时间,氰化尾矿金品位由0.83 g/t可以降至0.35 g/t;采用异戊基黄药和环烷酸皂混合捕收剂选铅,可得到品位和回收率分别为46.83%和35.15%的铅精矿;采用CL-5消除矿浆中游离氰以及铅浮选残留药剂对铜浮选的影响,活化剂AS-2和Na2S活化铜,混合黄药T820、F-1黑药和C5-9羟肟酸作混合捕收剂选铜,可得到品位和回收率分别为17.72%和53.33%的铜精矿;磁选回收铁矿物,先弱磁后强磁,可以得到品位64%和51%两种铁精矿。  相似文献   

18.
以铜浮选尾渣为原料,采用直接熔融还原—磁选的方法回收铁,探讨了在焙烧温度为1 350℃时,碳粉、氧化钙用量及焙烧恒温时间对还原渣磁选过程铁回收率与铁精矿品位的影响。结果表明,在碳粉和氧化钙添加量分别为铜渣质量的32%和10%、恒温100min的条件下对浮选尾渣进行熔融还原,焙烧后的产物破碎磨细至-0.074mm占85%,再进行弱磁选,可获得铁品位为67.47%的还原铁精矿,铁回收率为92.32%。  相似文献   

19.
对某选铁尾矿中的白钨进行了综合回收试验研究。根据试料性质,采用了弱磁选-重选-强磁选、弱磁选-重选、弱磁选-重选-浮选等3种方案进行白钨选矿试验,最终确定弱磁选-重选-浮选工艺。试验结果为铁精矿品位Fe65.89%,回收率22.07%,钨精矿品位WO351.64%,回收率为10.94%的分选指标。  相似文献   

20.
某含硫铜铁矿磁黄铁矿含量较高,使用常规抑制剂石灰抑制硫,铁精矿中硫含量超标。原矿中铜品位0.35%,铁品位28.95%,硫品位9.84%,铜大部分以黄铜矿形式存在,还含有少量的墨铜矿,铁主要以磁铁矿形式存在。使用新型抑制剂WDF-3作抑制剂,不仅能较好的抑制硫,而且后续铁精矿降硫时,较易被活化脱除。采用先浮选铜→浮选尾矿磁选→磁选粗精矿再磨再选→铁精矿浮选硫,中矿依次返回的闭路试验流程,获得铜精矿中Cu品位19.58%,回收率为74.05%,硫精矿中S品位50.21%,回收率81.59%,铁精矿中Fe品位64.89%,回收率53.87%,获得较好的选别指标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号