首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Cytokine-stimulated astrocytes and macrophages are potent producers of nitric oxide (NO), a free radical proposed to play an important role in organ-specific autoimmunity, including demyelinating diseases of the central nervous system. The aim of this study was to investigate effects of pentoxifylline (PTX), a phosphodiesterase inhibitor with immunomodulatory properties, on NO production and inducible NO synthase (iNOS) mRNA expression in rat astrocytes and macrophages. We have shown that PTX affects cytokine (interferon-gamma, IFN-gamma; interleukin-1, IL-1; tumour-necrosis factor-alpha, TNF-alpha)-induced NO production in both cell types, but in the opposite manner--enhancing in astrocytes and suppressive in macrophages. While PTX did not have any effect on enzymatic activity of iNOS in activated cells, expression of iNOS mRNA was elevated in astrocytes and decreased in macrophages treated with cytokines and PTX. Treatment with PTX alone affected neither NO production nor iNOS mRNA levels in astrocytes or macrophages. This study indicates involvement of different signalling pathways associated with iNOS induction in astrocytes and macrophages, thus emphasizing complexity of regulation of NO synthesis in different cell types.  相似文献   

3.
Nitric oxide (NO) is a pluripotent molecule that can be secreted by skeletal muscle through the activity of the neuronal constitutive isoform of NO synthase. To determine whether skeletal muscle and diaphragm might also express the macrophage-inducible form of NO synthase (iNOS) during provocative states, we examined tissue from mice at serial times after intravenous administration of Escherichia coli endotoxin. In these studies, iNOS mRNA was strongly expressed in the diaphragm and skeletal muscle of mice 4 h after intravenous endotoxin and was significantly diminished by 8 h after challenge. Induction of iNOS mRNA was followed by expression of iNOS immunoreactive protein on Western immunoblots. Increased iNOS activity was demonstrated by conversion of arginine to citrulline. Immunochemical analysis of diaphragmatic explants exposed to endotoxin in vitro revealed specific iNOS staining in myocytes, in addition to macrophages and endothelium. These results may be important in understanding the pathogenesis of respiratory pump failure during septic shock, as well as skeletal muscle injury during inflammation or metabolic stress.  相似文献   

4.
Nitric oxide (NO), generated by endothelial (e) NO synthase (NOS) and neuronal (n) NOS, plays a ubiquitous role in the body in controlling the function of almost every, if not every, organ system. Bacterial and viral products, such as bacterial lipopolysaccharide (LPS), induce inducible (i) NOS synthesis that produces massive amounts of NO toxic to the invading viruses and bacteria, but also host cells by inactivation of enzymes leading to cell death. The actions of all forms of NOS are mediated not only by the free radical oxidant properties of this soluble gas, but also by its activation of guanylate cyclase (GC), leading to the production of cyclic guanosine monophosphate (cGMP) that mediates many of its physiological actions. In addition, NO activates cyclooxygenase and lipoxygenase, leading to the production of physiologically relevant quantities of prostaglandin E2 (PGE2) and leukotrienes. In the case of iNOS, the massive release of NO, PGE2, and leukotrienes produces toxic effects. Systemic injection of LPS causes induction of interleukin (IL)-1 beta mRNA followed by IL-beta synthesis that induces iNOS mRNA with a latency of two and four hours, respectively, in the anterior pituitary and pineal glands, meninges, and choroid plexus, regions outside the blood-brain barrier, and shortly thereafter, in hypothalamic regions, such as the temperature-regulating centers, paraventricular nucleus containing releasing and inhibiting hormone neurons, and the arcuate nucleus, a region containing these neurons and axons bound for the median eminence. We are currently determining if LPS similarly activates cytokine and iNOS production in the cardiovascular system and the gonads. Our hypothesis is that recurrent infections over the life span play a significant role in producing aging changes in all systems outside the blood-brain barrier via release of toxic quantities of NO. NO may be a major factor in the development of coronary heart disease (CHD). Considerable evidence has accrued indicating a role for infections in the induction of CHD and, indeed, patients treated with a tetracycline derivative had 10 times less complications of CHD than their controls. Stress, inflammation, and infection have all been shown to cause induction of iNOS in rats, and it is likely that this triad of events is very important in progression of coronary arteriosclerosis leading to coronary occlusion. Aging of the anterior pituitary and pineal with resultant decreased secretion of pituitary hormones and the pineal hormone, melatonin, respectively, may be caused by NO. The induction of iNOS in the temperature-regulating centers by infections may cause the decreased febrile response in the aged by loss of thermosensitive neurons. iNOS induction in the paraventricular nucleus may cause the decreased nocturnal secretion of growth hormone (GH) and prolactin that occurs with age, and its induction in the arcuate nucleus may destroy luteinizing hormone-releasing hormone (LHRH) neurons, thereby leading to decreased release of gonadotropins. Recurrent infections may play a role in aging of other parts of the brain, because there are increased numbers of astrocytes expressing IL-1 beta throughout the brain in aged patients. IL-1 and products of NO activity accumulate around the plaques of Alzheimer's, and may play a role in the progression of the disease. Early onset Parkinsonism following flu encephalitis during World War I was possibly due to induction of iNOS in cells adjacent to substantia nigra dopaminergic neurons leading to death of these cells, which, coupled with ordinary aging fall out, led to Parkinsonism. The central nervous system (CNS) pathology in AIDS patients bears striking resemblance to aging changes, and may also be largely caused by the action of iNOS. Antioxidants, such as melatonin, vitamin C, and vitamin E, probably play an important acute and chronic role in reducing or eliminating the oxidant damage produced by NO.  相似文献   

5.
Nitric oxide generated from the inducible nitric oxide synthase (iNOS) has been implicated in the pathogenesis of multiple sclerosis. Because significant species- and cell-specific differences exist in the expression of iNOS, we used primary human glial cell cultures to screen for an inhibitor of iNOS expression. Remarkably, among numerous soluble factors tested, interferon-beta (IFN-beta) alone showed a selective and potent inhibition of interleukin-1beta/interferon-gamma (IL-1beta/IFN-gamma)-induced iNOS expression in astrocytes. Inhibition of iNOS may provide a mechanism by which IFN-beta can ameliorate inflammation and cytotoxicity in the central nervous system of patients with multiple sclerosis.  相似文献   

6.
To elucidate the role of excessive nitric oxide (NO) via the inducible nitric oxide synthase (iNOS) in experimental allergic encephalomyelitis (EAE), the effect of a selective iNOS inhibitor, aminoguanidine, was investigated using mice with actively induced EAE. Administration of aminoguanidine by intraperitoneal or intracisternal injection from day 2 to day 12 after immunization produced a significant delay in the onset of EAE. On the other hand, administration of aminoguanidine by intraperitoneal or intracisternal injection for 10 days after the onset of EAE enhanced the clinical severity and mortality rate and hastened the onset of relapse significantly. The histological study at day 11 after the onset revealed that more inflammatory cells were present in the central nervous system of mice treated with aminoguanidine as compared with mice without aminoguanidine treatment. These results suggested that NO via iNOS was a pathogenetic factor in the induction phase of EAE, but had an inhibitory role in the progression phase of EAE. Although the effect of NO synthase inhibitors on EAE has been controversial, the present study suggested that the timing of administration might be an important consideration and might explain the previous contradictory reports.  相似文献   

7.
1 The role of nitric oxide (NO) derived from constitutive and inducible nitric oxide synthase (cNOS and iNOS) and its relationship to oxygen-derived free radicals and prostaglandins (PG) was investigated in a carrageenan-induced model of acute hindpaw inflammation. 2 The intraplantar injection of carrageenan elicited an inflammatory response that was characterized by a time-dependent increase in paw oedema, neutrophil infiltration, and increased levels of nitrite/nitrate (NO2-/NO3-) and prostaglandin E2(PGE2) in the paw exudate. 3 Paw oedema was maximal by 6 h and remained elevated for 10 h following carrageenan administration. The non-selective cNOS/iNOS inhibitors, NG-monomethyl-L-arginine (L-NMMA) and NG-nitro-L-arginine methyl ester (L-NAME) given intravenously (30-300 mg kg-1) 1 h before or after carrageenan administration, inhibited paw oedema at all time points. 4 The selective iNOS inhibitors, N-iminoethyl-L-lysine (L-NIL) or aminoguanidine (AG), failed to inhibit carrageenan-induced paw oedema during the first 4 h following carrageenan administration, but inhibited paw oedema at subsequent time points (from 5-10 h). iNOS mRNA was detected between 3 to 10 h following carrageenan administration using ribonuclease protection assays. iNOS protein was first detected 6 h and was maximal 10 h following carrageenan administration as shown by Western blot analysis. Administration of the iNOS inhibitors 5 h after carrageenan (a time point where iNOS was expressed) inhibited paw oedema at all subsequent time points. Infiltrating neutrophils were not the source of iNOS since pretreatment with colchicine (2 mg kg-1) suppressed neutrophil infiltration, but did not inhibit the iNOS mRNA expression or the elevated NO2-/NO3- levels in the paw exudate. 5 Inhibition of paw oedema by the NOS inhibitors was associated with attenuation of both the NO2-/NO3- and PGE2 levels in the paw exudate. These inhibitors also reduced the neutrophil infiltration at the site of inflammation. 6 Recombinant human Cu/Zn superoxide dismutase coupled to polyethyleneglycol (PEGrhSOD; 12 x 10(3) u kg-1), administered intravenously either 30 min prior to or 1 h after carrageenan injection, inhibited paw oedema and neutrophil infiltration, but had no effect on NO2-/NO3- or PGE2 production in the paw exudate. The administration of catalase (40 x 10(3) u kg-1), given intraperitoneally 30 min before carrageenan administration, had no effect on paw oedema. Treatment with desferrioxamine (300 mg kg-1), given subcutaneously 1 h before carrageenan, inhibited paw oedema during the first 2 h after carrageenan administration, but not at later times. 7 These results suggest that the NO produced by cNOS is involved in the development of inflammation at early time points following carrageenan administration and that NO produced by iNOS is involved in the maintenance of the inflammatory response at later time points. The potential interactions of NO with superoxide anion and PG is discussed.  相似文献   

8.
9.
10.
We used an antisense oligodeoxynucleotide (ODN) complementary to inducible nitric oxide synthase (iNOS) to inhibit experimental autoimmune encephalomyelitis (EAE) in female SJL/J mice, an animal model for multiple sclerosis. The antisense ODN was administered intraventricularly to mice daily for 10 days beginning at the time of adoptive transfer of myelin basic protein-specific T lymphocytes. The antisense ODN treatment significantly reduced the clinical score of EAE and blocked iNOS mRNA and protein synthesis, as well as iNOS enzyme activity within the central nervous system. The levels of nitric oxide and cyclic guanosine monophosphate were also significantly reduced by the antisense ODN treatment. Neither sense nor random ODN affected clinical EAE or iNOS expression. Moreover, the protein and enzyme activity level of constitutive neuronal nitric oxide synthase was not affected by the antisense ODN. Thus, we have shown that the iNOS antisense ODN specifically blocked iNOS expression and ameliorated the induction of EAE.  相似文献   

11.
Intranasal inoculation of the neuroattenuated OBLV60 strain of mouse hepatitis virus results in infection of mitral neurons in the olfactory bulb, followed by spread along olfactory and limbic pathways to the brain. Immunocompetent BALB/c mice were able to clear virus by 11 days postinfection (p.i.). Gamma interferon (IFN-gamma) may play a role in clearance of OBLV60 from infected immunocompetent BALB/c mice through a nonlytic mechanism. Among the variety of immunomodulatory activities of IFN-gamma is the induction of expression of inducible nitric oxide synthase (iNOS), an enzyme responsible for the production of nitric oxide (NO). Studies were undertaken to investigate the role of IFN-gamma and NO in host defense and clearance of OBLV60 from the central nervous system (CNS). Exposure of OBLV60-infected OBL21a cells, a mouse neuronal cell line, to the NO-generating compound S-nitroso-L-acetyl penicillamine resulted in a significant decrease in viral replication, indicating that NO interfered with viral replication. Furthermore, infection of IFN-gamma knockout (GKO) mice and athymic nude mice with OBLV60 resulted in low-level expression of iNOS mRNA and protein in the brains compared to that of OBLV60-infected BALB/c mice. Nude mice were unable to clear virus and eventually died between days 11 and 14 p.i. (B. D. Pearce, M. V. Hobbs, T. S. McGraw, and M. J. Buchmeier, J. Virol. 68:5483-5495, 1994); however, GKO mice survived infection and cleared virus by day 18 p.i. These data suggest that IFN-gamma production in the olfactory bulb contributed to but may not be essential for clearance of OBLV60 from the brain. In addition, treatment of OBLV60-infected BALB/c mice with aminoguanidine, a selective inhibitor of iNOS activity, did not result in any increase in mortality, and the mice cleared the virus by 11 days p.i. These data suggest that although NO was able to block replication of virus in vitro, expression of iNOS with NO release in vivo did not appear to be the determinant factor in clearance of OBLV60 from CNS neurons.  相似文献   

12.
BACKGROUND: Excess production of nitric oxide (NO) by inducible NO synthase (iNOS) has been implicated in a variety of physiological processes including vascular remodeling. To elucidate whether endogenous NO generated by iNOS is involved in the programmed cell death (apoptosis) of the vasculature, iNOS cDNA- expressing construct was transfected into rat and human vascular smooth muscle cells (VSMCs) by lipofection. METHODS AND RESULTS: VSMCs transiently transfected with iNOS cDNA functionally expressed 130 kd iNOS protein with full catalytic activity to generate massive NO in proportion to the doses of cDNA used; its enzymatic activity as well as NO production was completely blocked by an NOS inhibitor, NG-monomethyl-L-arginine (LNMMA). Overexpression of iNOS led to a marked inhibition of DNA synthesis as well as induction of apoptosis in VSMCs. Evidence for apoptotic cell death was provided by internucleosomal DNA fragmentation by agarose gel electrophoresis, positive staining for TdT-mediated dUTP biotin nick end-labeling, and appearance of hypodiploid cells by flow cytometry analysis. Apoptosis after transfection with iNOS cDNA was abrogated by LNMMA. Transfection of iNOS cDNA caused accumulation of the tumor suppressor gene p53 but not of bcl-2, which was also blocked by LNMMA. CONCLUSIONS: These results demonstrate that massive generation of endogenous NO derived from iNOS overexpression leads to a marked apoptosis in VSMCs, thus suggesting an important role of NO as a proapoptotic factor for VSMCs in the process of vascular remodeling.  相似文献   

13.
14.
Nitric oxide (NO) is an unusual chemical messenger. NO mediates blood vessel relaxation when produced by endothelial cells. When produced by macrophages, NO contributes to the cytotoxic function of these immune cells. NO also functions as a neurotransmitter and neuromodulator in the central and peripheral nervous systems. The effects on blood vessel tone and neuronal function form the basis for an important role of NO on neuroendocrine function and behavior. NO mediates hypothalamic portal blood flow and, thus, affects oxytocin and vasopression secretion; furthermore, NO mediates neuroendocrine function in the hypothalamic-pituitary-gonadal and hypothalamic-pituitary-adrenal axes. NO influences several motivated behaviors including sexual, aggressive, and ingestive behaviors. Learning and memory are also influenced by NO. Taken together, NO is emerging as an important chemical mediator of neuroendocrine function and behavior.  相似文献   

15.
16.
Focal cerebral ischemia is associated with expression of both inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), enzymes whose reaction products contribute to the evolution of ischemic brain injury. We tested the hypothesis that, after cerebral ischemia, nitric oxide (NO) produced by iNOS enhances COX-2 activity, thereby increasing the toxic potential of this enzyme. Cerebral ischemia was produced by middle cerebral artery occlusion in rats or mice. Twenty-four hours after ischemia in rats, iNOS-immunoreactive neutrophils were observed in close proximity (<20 micrometer) to COX-2-positive cells at the periphery of the infarct. In the olfactory bulb, only COX-2 positive cells were observed. Cerebral ischemia increased the concentration of the COX-2 reaction product prostaglandin E2 (PGE2) in the ischemic area and in the ipsilateral olfactory bulb. The iNOS inhibitor aminoguanidine reduced PGE2 concentration in the infarct, where both iNOS and COX-2 were expressed, but not in the olfactory bulb, where only COX-2 was expressed. Postischemic PGE2 accumulation was reduced significantly in iNOS null mice compared with wild-type controls (C57BL/6 or SV129). The data provide evidence that NO produced by iNOS influences COX-2 activity after focal cerebral ischemia. Pro-inflammatory prostanoids and reactive oxygen species produced by COX-2 may be a previously unrecognized factor by which NO contributes to ischemic brain injury. The pathogenic effect of the interaction between NO, or a derived specie, and COX-2 is likely to play a role also in other brain diseases associated with inflammation.  相似文献   

17.
Nitric oxide (NO), an atmospheric gas and free radical, is also an important biological mediator in animals and humans. Its enzymatic synthesis by constitutive (c) and inducible (i) isoforms of NO synthase (NOS) and its reactions with other biological molecules such as reactive oxygen species are well characterized. NO modulates pulmonary and systemic vascular tone through its vasodilator property. It has antithrombotic functions and mediates some consequences of the innate and acute inflammatory responses; cytokines and bacterial toxins induce widespread expression of iNOS associated with microvascular and haemodynamic changes in sepsis. Within the lungs, a diminution of NO production is implicated in pathological states associated with pulmonary hypertension, such as acute respiratory distress syndrome: inhaled NO is a selective pulmonary vasodilator and can improve ventilation-perfusion mismatch. However, it may have deleterious effects through modulating hypoxic pulmonary vasoconstriction. Inhibitors of NOS may be of benefit in inotrope-refractory septic shock, but toxicity of newly developed selective iNOS inhibitors have prevented clinical trials of efficacy. An expanding literature on the origins and measurement of NO in exhaled breath implicates NO as a potentially useful marker of disease activity in respiratory tract inflammation in the future. This report reviews some aspects of research into the clinical importance of nitric oxide.  相似文献   

18.
Nitric oxide (NO) is implicated in a number of inflammatory processes and is an important mediator in animal models of rheumatoid arthritis and in in vitro models of cartilage degradation. The pyridinyl imidazole SB 203580 inhibits p38 mitogen-activated protein (MAP) kinase in vitro, blocks proinflammatory cytokine production in vitro and in vivo, and is effective in animal models of arthritis. The purpose of this study was to determine whether SB 203580 could inhibit p38 MAP kinase activity, NO production, and inducible NO synthase (iNOS) in IL-1 stimulated bovine articular cartilage/chondrocyte cultures. The results indicated that SB 203580 inhibited both IL-1 stimulated p38 MAP kinase activity in isolated chondrocytes and NO production in bovine chondrocytes and cartilage explants with an IC50 value of approximately 1 microM. To inhibit NO production, SB 203580 had to be present in cartilage explant cultures during the first 8 h of IL-1 stimulation, and activity was lost when it was added 24 h following IL-1. SB 203580 did not inhibit iNOS activity, as measured by the conversion of arginine to citrulline, when added directly to cultures where the enzyme had already been induced, but had to be present during the induction period. Using a 372-bp probe for bovine iNOS we demonstrated inhibition of IL-1-induced mRNA by SB 203580 at both 4 and 24 h following IL-1 treatment. The iNOS mRNA levels were consistent with NO levels in 24-h cell culture supernatants of the IL-1-stimulated bovine chondrocytes used to obtain the RNA.  相似文献   

19.
Our laboratory has demonstrated that aging in Brown-Norway rats is associated with decreased LH pulse amplitude and reduced GnRH and LH responsiveness to excitatory amino acids (EAA), presumably through the NMDA receptor (NMDAR). Nitric oxide (NO) is a neurotransmitter postulated to be involved in hypothalamic synaptic events required for normal GnRH regulation through the activation of neuronal nitric oxide synthase (nNOS). Paradoxically, excessive stimulation of nNOS by NMDAR or the expression of inducible nitric oxide synthase (iNOS) can lead to supraphysiological levels of NO acting as effector of apoptosis with resultant decreased regional neuronal function. The aims of this study were to determine: 1) whether aging in the preoptic area/medial basal hypothalamus is associated with altered NO synthesis; 2) the possible roles of the NMDAR/nNOS cascade and iNOS in this process; and 3) whether alterations in the levels of NOS isoforms are specific to this region of the brain. Brown Norway male rats (N = 5) at ages 1 (immature), 3 (adult), and 24 (old) months, were used for measuring NMDARs in hypothalamic membranes by the binding of a (3H)-NMDAR ligand. Another series of the same age groups of rats (N = 9) were used to determine by Western blot the contents of NMDAR, nNOS, and iNOS in the hypothalamus, and only iNOS in the frontal and parietal cortex, and cerebellum. NOS activity was measured in the hypothalamus by the arginine/citrulline assay. A significant decrease of NMDA analog binding was found in the hypothalamus from old rats as compared with adult (-66%) and immature animals (-57%), accompanied by a reduction in NMDAR content (-34% and -46%, respectively). NOS activity in the hypothalamus was 67% and 100% higher in old rats as compared with the other two groups, although no significant differences were observed in nNOS content. However, hypothalamic iNOS increased 3.8- and 7.6-fold in old rats, as compared with adult and immature, respectively. This increase in hypothalamic iNOS was paralleled by a rise of iNOS in other brain regions of old rats as compared respectively to adult and immature animals: 3.9- and 12.8-fold, in the frontal cortex; 2.8- and 2.5-fold, in the parietal cortex; and 3.1- and 4.8-fold, in the cerebellum. These results show that aging in this rat model is associated with high NO synthesis in the hypothalamus and other regions of the brain, which is independent of the NMDAR/nNOS cascade. We speculate that increased brain levels of iNOS may lead to neurotoxicity, which may be involved in GnRH impaired pulsatile secretion, as well as acting as a possible inducer of age associated neuronal loss in cognitive related brain areas.  相似文献   

20.
BACKGROUND: We recently demonstrated that inhibition of nitric oxide (NO) production ameliorated acute pulmonary allograft rejection. This study examined whether inducible NO synthase (iNOS) was expressed in the transplanted lung during acute rejection. METHODS: With a rat left lung transplant model, tissue from syngeneic (Fischer 344 to Fischer 344) and allogeneic (Brown Norway to Fischer 344) transplants were harvested on postoperative day 4 and analyzed for iNOS mRNA expression (ribonuclease protection assay), iNOS enzyme activity (conversion of L-[3H]-arginine to NO and L-[3H]-citrulline), and serum nitrite/nitrate levels. RESULTS: The iNOS mRNA was expressed in allograft lungs but was not detected in isografts or controls. The iNOS protein was present in allograft lungs, as demonstrated by high levels of L-[3H]-citrulline production compared with minimal iNOS enzyme activity in isograft and control lungs (10.1 +/- 2.4 vs 0.6 +/- 0.2 and 0.7 +/- 0.2 pmol L-[3H]-citrulline.mg-1.min-1, respectively; n = 6, p < 0.001). Allografts had significantly elevated systemic serum nitrite/nitrate levels compared with isografts and controls (38 +/- 6 vs 18 +/- 2 and 16 +/- 1 mumol/L, respectively; n = 6; p < 0.005). CONCLUSIONS: These results, together with our previous demonstration that iNOS inhibition ameliorated lung allograft rejection, suggest that (1) iNOS expression and increased NO production contributed to acute rejection of the transplanted lung, (2) iNOS inhibition may offer an alternative in management of acute lung allograft rejection, and (3) increased NO production, detected by the presence of iNOS mRNA or protein or noninvasively by measuring serum nitrite/nitrate levels, may serve as an early marker of acute allograft rejection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号