首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
湖南某钽铌矿中含有大量的长石、云母、石英等非金属矿物,综合回收这些非金属矿物,对增加经济附加值,提高经济效益具有十分重要的作用。试验在研究矿石性质的基础上,对强磁选尾矿(原矿强磁回收钽铌后的尾矿)采用云母浮选—长石、石英分离的浮选工艺流程,通过条件试验、流程试验,综合回收有价的非金属矿物,取得技术指标较好的云母精矿、长石精矿和石英精矿。  相似文献   

2.
广西某黑钨矿属石英脉石型黑钨矿床,原矿WO3品位为0.41%,采用"预先分级-中细粒级摇床抛尾-粗粒级磨矿-摇床精选-反浮选-磁选"工艺流程脱除绢云母、石英等脉石矿物,最终可获得产率0.47%、WO3品位67.31%,回收率77.16%的黑钨精矿。钨资源得到较好的回收。  相似文献   

3.
针对西藏某磁黄铁矿、磁铁矿、石榴石等磁性矿物含量高、钨钼品位低、矿物共生关系密切的钨钼矿石进行了选矿工艺试验研究。采用磁选(预先抛尾)—钼硫等可浮—钼硫分离—钼硫尾矿再浮选脱硫—脱硫尾矿再浮选收钨的工艺流程,可获得Mo品位50. 02%、回收率77. 33%的钼精矿,WO3品位65. 06%、回收率76. 35%的钨精矿,实现了钼、钨的高效回收,为经济合理开发该类矿石提供了一定参考。  相似文献   

4.
某钾长石英岩型铌钽矿的综合利用研究   总被引:1,自引:0,他引:1  
针对某钾长石英岩型铌钽稀有金属矿,进行了详尽的工艺矿物学研究,查明金属矿物主要是赤铁矿,钛铁矿等;脉石矿物主要为钾长石、石英、云母等。钽铌铁矿以微细粒状态存在,大部分包裹于赤铁矿中。根据矿石性质并从可经济利用角度考虑,采用"强磁-反浮回收赤铁矿"+"磁选尾矿脱泥-反浮回收钾长石"工艺流程,回收了其中的铌钽、钾长石、赤铁矿、石英等矿物,提高矿床利用的经济可行性,为矿床勘探评价与开发利用提供科学依据。采用"强磁-反浮选"流程处理TFe品位为5.70%的原矿,得到的赤铁矿精矿TFe品位为60.51%,Nb2O5品位1009.79 g·t-1,Ta2O5品位147.32 g·t-1,TFe回收率为70.03%,Nb2O5回收率23.53%,Ta2O5回收率35.79%。强磁选尾矿再经过"脱泥+反浮选"工艺流程获得了长石精矿,长石精矿中K2O品位12.18%、回收率为75.29%。长石精矿中杂质氧化铁和氧化钛含量小于0.2%,该长石精矿符合行业标准(JC/T859-2000)中的一等品等级。赤铁矿精矿符合炼钢用铁矿石质量要求二级品。铌钽在赤铁矿精矿中富集,达到了综合回收的目的。  相似文献   

5.
对山西阳泉地区m(Al_2O_3)/m(SiO_2)为3.5的低品位铝土矿,采用干湿两段磨矿工艺,通过混矿、磨矿、浮选、精、尾矿脱水、药剂配制与水循环的方法,添加浮选捕收剂、六偏磷酸钠等,进行浮选流程开路、闭路实验,实现了低铝硅比铝土矿的脱硅富集,精矿产率可达到65.71%,精矿品位w(Al)为67.64,m(Al_2O_3)/m(SiO_2)为5.98。  相似文献   

6.
对铜陵某铜尾矿选矿综合回收进行了试验研究。在工艺矿物学研究的基础上,采用尾矿预先分级-粗粒磨矿-浮选-磁选工艺流程,可得到铜精矿铜品位为9.5%,回收率为33.7%,铜精矿含金4.70g/t、银158.4g/t,铁精矿铁品位66.22%、回收率16.85%、含硫0.26%。使尾矿资源得到充分利用,企业的可持续发展状况也将得以改善。  相似文献   

7.
难选高硫铁矿提质降硫选矿工艺试验   总被引:1,自引:0,他引:1  
在分析矿石性质的基础上,采用浮选—浮尾筛分再磨—磁选流程,使磁黄铁矿提前进入泡沫产品,减少其在磁性矿物中的混杂,浮选尾矿细筛再磨提高了矿物的单体解离度,有利于提高铁硫分选效率。试验确定了磨矿细度及工艺流程,结果表明:在硫酸铜用量为170g/t、黄药用量为60g/t、2#油用量为34g/t、添加Na2CO3的条件下,获得品位65.42%、回收率68.31%、硫含量0.28%的铁精矿;同时,可综合回收硫,硫精矿品位38.73%,回收率60.02%。  相似文献   

8.
太阳坪金矿浮选尾矿中绢云母质量分数高达50%左右,具有回收利用价值。试验对绢云母回收工艺进行优化考察,最终确定采用磁选+水力旋流器分级工艺回收浮选尾矿中的绢云母,并应用于工业生产。工业应用获得绢云母精矿Al_2O_3品位23. 27%、回收率48. 18%的良好生产指标,实现了绢云母的综合回收利用,减少了尾矿排放量,增加了矿山经济效益。  相似文献   

9.
对某铅锌矿浮选尾矿中的锰矿物进行回收,尾矿脱硫后再用脉动高梯度强磁选一粗一精工艺流程,结果表明,可获得产率28.11%、Mn品位18.87%,Mn回收率为52.21%的锰精矿。达到了综合回收的目的,减少了尾矿的排放量。  相似文献   

10.
文章介绍了某选矿尾矿的工艺矿物学性质及可选性试验研究。根据试样性质,确定采用浮选除杂-长石、石英分离的工艺流程,获得了K2O品位为7.57%,Na2O含量为2.54%的长石精矿产品。  相似文献   

11.
铁锰元素是长石矿物的主要杂质,致使长石灼烧产品出现斑点,降低产品等级.针对江西某钽铌尾矿中铁锰暗色矿物影响长石产品质量这一问题,进行除杂试验研究,研究表明,采用“高梯度磁选除杂-旋流器脱泥-螺旋溜槽回收”工艺得到粗粒长石产品,采用“分级溢流集中经旋流器脱泥浓缩-高梯度强磁选”工艺得到细粒长石产品,长石总回收率≥93 %,选矿尾矿总排放量仅8 %,实现了钽铌矿尾矿中长石资源综合回收利用.   相似文献   

12.
内蒙古某多金属矿尾矿中的萤石具有回收价值,但该尾矿的矿物组成极其复杂,弱磁性脉石含量高。在萤石浮选前采用强磁选预先抛尾工艺除去该尾矿中的弱磁性矿物,磁性产品进入尾矿,非磁产品浓缩后作为萤石浮选给矿。采用强磁抛尾+浓缩换水+萤石浮选的磁浮联合工艺,生产中可得到萤石品位为97.58%,回收率为59.61%的萤石精矿。该工艺可获得良好的指标,应用前景十分广阔。  相似文献   

13.
福建某铜钼矿尾中K_2O质量分数为5.32%,Na_2O质量分数为2.49%,采用碱法工艺代替传统的酸法工艺进行处理回收长石,工艺流程为反浮选云母—反浮选石英—长石粗精矿磁选除铁。试验最终获得长石精矿中K_2O质量分数为7.48%、总回收率为39.89%,Na_2O质量分数为3.91%、总回收率为43.78%。该长石精矿符合玻璃及玻璃制品、陶瓷、磨料等原料标准。  相似文献   

14.
贵州某锰尾矿中含有品位为9.07%锰和9.74%硫,为了矿产资源能够得到充分利用,本试验通过浮选、磁选对比回收该锰尾矿中的锰和硫,最终确定采用先浮选回收硫,后磁选回收锰的工艺流程,并取得了硫精矿品位42.19%,回收率为85.72%以及锰精矿品位34.01%,回收率61.95%的选矿指标,为该类锰尾矿的资源综合利用提供了技术参考。  相似文献   

15.
正该技术对铁钼型矿石采用先磁后浮选别顺序,先获得铁精矿;磁选尾矿采用"一粗二精二扫+粗精矿再磨精选四次"流程进行浮选,实现钼矿物与其他矿物组分有效分离,最终从磁选尾矿中获得钼精矿。关键技术:一是从铁矿石中经济有效地回收低品位共伴生的钼,解决了铁钼型矿石选钼的技术难题,首次在工业上实现从铁钼型矿石中回收低品位钼并获得合格钼精矿;二是采用先磁后浮的选别顺  相似文献   

16.
酒钢选矿厂排出的镜铁矿强磁选尾矿铁品位约为28%,有较高的回收价值。为回收其中的铁矿物,本研究基于该强磁选尾矿工艺矿物学,对其进行反浮选—磁化焙烧—磁选试验研究。研究结果表明:该强磁尾矿经过一粗一精的反浮选试验流程,可得到铁品位为43.88%的浮选精矿,其作业铁回收率为50.93%。经过磁化焙烧后得到焙砂,焙砂进行一粗一精的磁选试验后可得到铁品位为62.37%的磁选铁精矿,其作业铁回收率为83.39%。  相似文献   

17.
《稀土》2016,(2)
湖北某重稀土矿是以钇为主要成分的稀土矿,主要含钇矿物为硅铍钇矿、褐钇铌矿及磷钇矿。为了开发利用该重稀土矿资源,进行了实验室选矿试验研究。试验原矿品位为(Y_2O_3)0.088%,采用"磁选-浮选"的工艺流程,最终可获得稀土精矿品位为(Y_2O_3)3.42%,精矿产率为1.67%,回收率为58.13%重稀土精矿。  相似文献   

18.
以四川某矿区稀土矿为研究对象,通过对矿石工艺矿物学的分析,该矿石中稀土矿物以氟碳铈矿为主,有较高的回收价值。其他矿物主要为长石和石英,其次是重晶石、萤石、云母等。为合理回收稀土矿物,对其分选工艺进行了探索试验,结果表明,通过磁选-摇床重选-再磁选的工艺流程,在原矿品位6.21%左右,闭路试验可以得到REO品位55.43%、回收率79%左右的稀土精矿,回收指标较好。  相似文献   

19.
甘肃省某铷矿是西秦岭地区具有一定规模的稀有金属矿床,Rb2O品位为0.1%~0.2%,估算金属量约15万t。该铷矿属于花岗岩型,铷主要赋存于钾长石、黑云母中,其中钾长石中占66.8%,黑云母中占30.7%。介绍了原矿的化学成分和矿物组成,并进行了选矿流程试验。确定了适合该铷矿石的选矿工艺:原矿磨至50%-200目脱泥(-20μm)后,进行云母浮选,经一粗、一扫获得粗精矿,再磨至85%-200目后,经两次精选获得云母精矿;云母扫选尾矿经一粗、一扫、一精获得长石浮选精矿;长石扫选尾矿即为石英浮选精矿。采用的药剂为:十二胺、硫酸、氢氟酸。闭路试验获得了合格的非金属产品云母、长石和石英,纯度分别为90.7%,93.4%,97.0%,云母和长石产品中铷的总回收率为87.89%,可以作为综合评价该类矿产资源的依据。  相似文献   

20.
《钢铁钒钛》2021,42(2):117-124
针对国外某深度蚀变氧化型钒钛铁矿,铁矿物与钛矿物难以物理选矿实现分离,脉石矿物的比磁化系数、比重与金属矿物差异较大、易磨矿解离的特征,开展了选矿富集钒钛铁试验研究,对比了磁选回收工艺、分级-磁选回收工艺及重选回收工艺,确定磁选回收工艺为最适宜的回收工艺。磁选回收工艺获得了可市售的含钒铁精矿含Fe 60.52%、V_2O_5 1.03%,回收率分别为Fe 8.12%、V_2O_5 8.62%,钒钛铁混合精矿Fe 50.03%、V_2O_5 0.80%、TiO_216.01%,回收率分别为Fe 78.61%、V_2O_5 78.45%、TiO_2 82.88%的选别指标,混合精矿钒、钛、铁品位较高,可作为冶金进一步获取钒、钛、铁的原料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号