首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《炼钢》2021,(2)
对采用"BOF→LF→RH→CC"工艺生产EH36船板钢过程中的夹杂物进行了研究。用SEM-EDS分析了试样中的夹杂物形貌和成分,用FactSage软件计算了夹杂物的析出情况。研究表明:LF进站钢液中夹杂物主要为SiO_2,试样中的MnS是在试样凝固过程中形成的。Ca处理后,液态夹杂物数量增多。经过RH处理后,夹杂物中Al_2O_3含量升高,CaO和MgO含量降低。中间包钢液中夹杂物的Al_2O_3含量降低,CaO含量升高,夹杂物与渣发生反应,使夹杂物成分向低熔点区靠近。中间包渣中SiO_2含量较高,与钢中Al发生反应,使钢液中Si含量升高,Al含量降低。钢液凝固过程中发生成分偏析,使铸坯中夹杂物的S含量明显升高,Al_2O_3含量升高,CaO含量降低。在铸坯中形成了CaO和Al_2O_3比例不同的钙铝酸盐夹杂物以及Al_2O_3夹杂物,且部分钙铝酸盐表面形成CaS。  相似文献   

2.
围绕某钢铁企业生产的DP590钢中非金属夹杂物在精炼及浇铸过程中的演变行为,采用氧氮分析、显微夹杂统计及SEM-EDS能谱分析等手段进行了系统深入的研究。利用Fact-Sage软件计算并绘制了1 600℃时CaS-CaO-Al_2O_3三元相图,分析了精炼和连铸过程中夹杂物在CaS-CaO-Al_2O_3三元相图中的演变行为。研究发现,在该厂现行工艺条件下,LF喂钙处理可降低钢中的全氧含量和非金属显微夹杂含量。转炉炉后出钢至精炼出站全氧含量降低了27×10~(-6),非金属显微夹杂物含量减少了54.5%。稳态连铸坯中的氧、氮含量和显微夹杂含量较低。LF精炼喂钙线之前显微夹杂的主要成分为Al_2O_3。在LF精炼钙处理后,中间包及连铸坯中发现了大量的球形Ca O-Al_2O_3类夹杂,这表明钙处理效果良好,实现了将Al_2O_3夹杂物变性的目的。热力学计算结果表明钙处理过程中夹杂物的演变行为为Al_2O_3→Al_2O_3+CaO·6Al_2O_3+CaS→Al_2O_3+CaO·2Al_2O_3+Ca S(Ca S较多,Ca O较少)→Al_2O_3+CaO·2Al_2O_3+CaS(CaS较少,CaO较多)。  相似文献   

3.
采用扫描电镜和大样电解等检验方法对抗硫管线钢的冶炼过程试样和连铸坯中夹杂物的数量、尺寸、成分、形貌进行系统分析。结果表明:钢液经过LF精炼后,显微夹杂物的面积比降低了34.7%;中间包钢液的夹杂物面积比较VD出站增加了6.1%。LF进站钢液中的夹杂物主要为Al_2O_3夹杂物,在LF精炼和VD真空处理过程中由于钢渣间的相互作用,形成以CaO、MgO、Al_2O_3为主要组成的复合型夹杂物。钙处理后夹杂物中的CaO和Al_2O_3的物质的量比接近12∶7,并与钢液发生了脱硫反应,形成了含CaS的复合夹杂物。中间包开浇阶段铸坯中的显微夹杂物和大型夹杂物都明显高于稳定浇铸状态;在稳定浇铸状态下,铸坯中的w(T[O])小于15×10~(-6),大型夹杂物的含量小于0.2 mg/kg;大型夹杂物的主要来源是钢包引流砂、结晶器保护渣。  相似文献   

4.
《炼钢》2015,(6)
针对超低氧含量特殊钢中大型非金属夹杂物问题开展了相关工业试验和实验室研究,研究结果表明:1)当钢液w(T.O)低于(13~15)×10~(-6)后,通过LF精炼进一步降低钢液总氧和夹杂物含量变得困难。而RH真空精炼在钢液超低氧含量条件下则具有非常强的进一步降氧和去除夹杂物的能力,将RH精炼时间延长至33 min左右,钢液w(T.O)降至4.7×10-6,尺寸1.5μm以上夹杂物数量减少至1.77个/mm~2。2)超低氧特殊钢中夹杂物在钢液二次精炼过程会经历"Al_2O_3→MgO-Al_2O_3→CaO-MgOAl_2O_3→CaO-Al_2O_3"转变,其中Al_2O_3向MgO-Al_2O_3系夹杂物转变是由于钢液[Mg]与Al_2O_3夹杂物的反应,而[Mg]主要来源于[Al]还原钢包包衬MgO的反应。3)在w(T.O)=5.9×10-6的特殊钢连铸圆坯试样中检测到尺寸100~330μm的大型簇群状CaO-MgO-Al_2O_3系夹杂物,构成簇群的微小颗粒与钢液中微小夹杂物类似,表明是在连铸过程由钢液中微小夹杂物聚合而成。4)经过RH精炼,钢中夹杂物绝大多数已转变为液态CaO-Al_2O_3系夹杂物,而连铸过程发生的二次氧化,会将钢中夹杂物转变为高熔点的CaO-Al_2O_3系、MgO-Al_2O_3系或CaO-MgO-Al_2O_3系固态夹杂物,固态夹杂物更易聚合为大型夹杂物,因此在超低氧特殊钢生产中必须非常严格地控制二次氧化。  相似文献   

5.
为了进一步研究20CrMo合金钢在生产过程中夹杂物的演变机理,实现对钢中非金属夹杂物的合理控制,保证生产顺行,提高产品力学性能,针对“BOF→LF→RH→钙处理→连铸→热轧”工序生产20CrMo合金钢全流程中非金属夹杂物的演变规律进行了研究。在LF精炼及RH精炼加钙前钢中非金属夹杂物含有70%以上的Al2O3。钙处理后,由于过量的钙加入到钢液中,夹杂物中CaS质量分数迅速增加至59%,Al2O3质量分数降低至21%。在连铸过程中由于二次氧化的发生,夹杂物转变为CaO?Al2O3,其中含有50%的Al2O3、39%的CaO和10%的CaS,并且夹杂物平均尺寸增加。在钢的冷却和凝固过程中,CaO质量分数降低至5%,CaS质量分数增加至57%,钢中夹杂物转变为Al2O3?CaO?CaS的复合夹杂物,同时含有少量大尺寸的CaO?Al2O3夹杂物。在钢的轧制过程中,夹杂物中CaO含量进一步降低,CaS含量增加,夹杂物平均尺寸增加,形成了CaO?Al2O3与CaS黏结型的复合夹杂物与Al2O3?CaS复合夹杂物。对CaO-Al2O3与CaS黏结型的复合夹杂物的形成原因进行了讨论。   相似文献   

6.
《钢铁》2018,(12)
针对X65管线钢探伤不合缺陷,从夹杂物转变过程分析了缺陷产生的原因,并提出了合理的钙处理工艺,达到控制B类夹杂物、降低探伤不合发生率的目的。研究结果表明,原工艺冶炼过程中夹杂物的转变过程为Al_2O_3→MgO-Al_2O_3→MgO-Al_2O_3-CaO→CaO-Al_2O_3,且最终夹杂物主要为低熔点区的高CaO质量分数钙铝酸盐;通过热力学计算,针对管线钢夹杂物控制提出了新的夹杂物控制目标,并建立了钙处理模型,根据实际的钢液条件计算钙处理控制窗口,用于指导不同w([S])、w(T[O])条件下的合理喂钙量。通过优化处理工艺,钢中钙质量分数由原工艺的0.003 0%~0.004 0%降低至0.001 0%~0.002 0%,铸坯中夹杂物类型为MgO-Al_2O_3-(CaO)-CaS低熔点和高熔点相复合的夹杂物,B类夹杂不大于2.0的一检合格率由96.5%提高至97.5%,夹杂物引起的探伤不合格率由10.0%降至1.5%以下,提高了管线钢的产品质量。  相似文献   

7.
郝鑫  王新华  王万军 《钢铁》2015,50(3):54-58
 通过工业试验研究了中厚板钢LF→钙处理→RH精炼过程中夹杂物的转变规律,并对钙处理过程夹杂物转变进行了热力学计算分析。结果表明:精炼过程钢中总氧质量分数降低,夹杂物数量密度降低,夹杂物平均尺寸升高;钙处理后夹杂物为CaO-MgO-Al2O3-CaS四元系;RH破空后夹杂物转变为CaO-MgO-Al2O3三元系,夹杂物中CaO质量分数降低,Al2O3质量分数升高;热力学计算表明,钙处理后钢液可直接生成CaS,也可与钙铝酸盐夹杂物反应生成CaS,RH破空后不能生成CaS。  相似文献   

8.
《炼钢》2017,(5)
开展工业试验研究了二次氧化以及钙处理对超低氧特殊钢中非金属夹杂物的影响,研究结果表明:采用LD→LF→RH→CC工艺路线,通过铝脱氧、造高碱度精炼渣,可生产w(T.O)0.000 7%的42CrMo特殊钢;钙处理虽有利于改善钢水浇铸性能,但将导致钢中大尺寸钙铝酸盐类夹杂物数量增加;二次氧化将导致液态CaO-MgO-Al_2O_3夹杂物向固态CaO-MgO-Al_2O_3夹杂物转变,同时导致Al_2O_3夹杂物和镁铝尖晶石夹杂物生成,对钢水洁净度不利。因此,生产超低氧特殊钢应尽量避免二次氧化和钙处理。  相似文献   

9.
对采用"铁水预处理→BOF→LF精炼→RH精炼→CC→轧板"工艺生产的船板钢进行系统地取样,采用扫描电镜对样品中夹杂物的形貌、尺寸及组成进行分析,结果表明:钙处理前,夹杂物主要为Al_2O_3-CaO及少量的MgO和SiO_2,尺寸在5μm以内;钙处理后,夹杂物主要为Al_2O_3-CaO-CaS,部分尺寸达10μm以上。钢板中主要夹杂物为CaS-CaO-Al_2O_3夹杂以及CaO-Al_2O_3-MgO。对夹杂物在轧制过程的变形情况进行了分析,结果表明,轧制过程发生变形的长条状夹杂物成分为CaO-Al_2O_3,而未变形的夹杂物为CaO-Al_2O_3外包裹着CaS。  相似文献   

10.
对涟钢LG600/LG700XL冶炼过程中夹杂物的衍变机理进行分析,分批次试验研究了精炼渣性能和钙处理工艺对钢液洁净度和钢中夹杂物的影响。结果表明,在钙处理工艺下,夹杂物的衍变路线为Al_2O_3→MgO-Al_2O_3→Al_2O_3-CaO,中间包钢液中的夹杂物主要是Al_2O_3-CaO和Al_2O_3-TiO_x复合氧化物。取消钙处理以后,铸坯中氧的质量分数从16×10~(-6)降低到11×10~(-6)。两种工艺下,材样中绝大部分夹杂物都是核心为铝酸盐、外层为TiN的复合夹杂,钙处理工艺下夹杂物核心是Al_2O_3-CaO-CaS,取消钙处理工艺下夹杂物核心是MgO-Al_2O_3尖晶石。两类复合夹杂物尺寸都比较小(10μm),对钢材性能的影响有限。取消钙处理以后,钢液可浇性基本保持不变,没有发生水口堵塞,说明取消精炼过程中的钙处理工艺对涟钢高强机械用钢而言是可行的。  相似文献   

11.
《炼钢》2021,(2)
从"AOD→LF→钙处理→连铸"进行全流程取样,重点分析316L不锈钢中氧氮含量、夹杂物数密度和成分。研究发现:在冶炼过程中,钢中w(T.O)逐渐降低,钙处理后为24×10~(-6),较AOD还原结束时降低183×10~(-6),浇铸时存在二次氧化,铸坯试样中w(T.O)增加8×10~(-6)。AOD还原期结束时,夹杂物类型主要为SiO_2-MnO系。LF进站时为CaO-Al_2O_3-SiO_2系和CaO-Al_2O_3-MgO系,前者主要来源于AOD卷渣和钢中Al反应生成,后者主要来源于SiO_2-MnO系夹杂物与钢中Al以及渣相反应生成。对于CaO-Al_2O_3-SiO_2系,LF进站时夹杂物平均成分偏离低熔点区,随着精炼过程的进行,夹杂物中CaO含量降低,Al_2O_3含量升高,其平均成分位于低熔点区内;对于CaO-Al_2O_3-MgO系,夹杂物中MgO含量升高,MgO·Al_2O_3尖晶石夹杂物数量增加,经过钙处理和静置上浮,CaO-Al_2O_3-MgO系夹杂物逐渐消失,夹杂物改性较为充分。  相似文献   

12.
研究了国内某厂生产X80管线钢精炼过程中夹杂物的转变.BOF出钢阶段加铝脱氧,钢中夹杂物以伴有极少量MgO的Al2O3为主;LF过程采用高碱度高还原性渣精炼,钢中Al2O3夹杂物向钙铝酸盐和CaO-MgO-Al2O3复合夹杂物转变,平均成分靠近低熔点区;RH真空处理后,夹杂物中Al2O3和MgO的含量减少,CaO含量增加,夹杂物成分分布较为分散;钙处理后,钢中CaO-MgO-Al2O3复合夹杂比例明显减少,CaO与CaS比例明显增加,夹杂物平均成分已经远离低熔点区,达到了高品质管线钢的冶炼效果.  相似文献   

13.
通过取样检测结合热力学计算,分析了钙处理对成品无取向硅钢中夹杂物特征及硫化物夹杂的析出机制的影响。结果表明,钢中尺寸大于3μm的有害夹杂物主要是AlN、MgO-SiO_2、CaO-Al_2O_3-SiO_2类复合夹杂物及其与MgS、MnS、CaS的复合析出物。钙处理钢中没有检测到单独的Al_2O_3、SiO_2及铝酸钙类夹杂物。钙处理钢中形成的液态3CaO·Al_2O_3、MgO·SiO_2和Al_2O_3夹杂物被精炼渣吸收,改性去除了钢中大尺寸Al_2O_3夹杂物。钙处理钢中尺寸大于3μm的氧化物夹杂主要是含CaO和(或)CaS的Al_2O_3-SiO_2类夹杂。硫化物在MgO-SiO_2类氧化物表面的析出有利于其形貌趋于规则。钢中不同形貌的AlN夹杂物呈多尺度分布,钙处理对大尺寸AlN的析出特性影响不大。氧硫化物及其与AlN复合析出并定向长大的过程,与其晶体结构有关。氧化物夹杂的硫容量决定了其与硫复合的难易程度。钙处理钢中CaS在氧化物表面呈局部包裹析出和局部吸附析出。  相似文献   

14.
 利用ASPEX扫描电镜(SEM+EDS)对某厂两种钙处理工艺(工艺A:LF→钙处理→RH,工艺B:LF→RH→钙处理)生产X70管线钢冶炼和浇铸过程中的夹杂物进行系统的研究。结果表明:工艺A生产的X70管线钢板中夹杂物是CA6和CA2(C代表CaO,A代表Al2O3)为主的高熔点的钙铝酸盐。产生此类夹杂物的主要原因是RH真空精炼中钙的严重损失以及中间包的二次氧化。CA6和CA2等夹杂物极易聚集成大尺寸夹杂物,经过轧制后严重影响钢板性能,甚至导致钢板探伤不合格。工艺B生产的X70管线钢中夹杂物为CaO-Al2O3(少量)-CaS系夹杂物,这种夹杂物尺寸小,弥散分布,对轧板性能危害小。  相似文献   

15.
为研究LF-RH精炼工艺生产Q690钢时不同钙处理时机下夹杂物特征的变化,开展工业试验对RH精炼前后钙处理炉次取样进行定量分析对比。钙处理后夹杂物中CaO质量分数持续增加,CaS质量分数瞬态增加,夹杂物熔点降低。RH精炼前钙处理炉次中,RH精炼过程夹杂物的成分接近低熔点区,结束时夹杂物数量密度和面积分数分别为15个/mm2和0.01%。RH精炼后钙处理炉次中,RH精炼过程夹杂物依旧为高熔点Al2O3-MgO类型,结束时夹杂物数量密度和面积分数分别降至1个/mm2和0.002 5%。RH精炼前钙处理会使RH精炼过程夹杂物熔点以及夹杂物与钢液间的接触角降低,导致夹杂物去除驱动力降低,从而抑制夹杂物的去除。因此LF-RH精炼工艺生产铝脱氧钢时,为提高精炼过程钢中非金属夹杂物的去除效率,应在RH精炼后进行钙处理操作。  相似文献   

16.
采用夹杂物自动扫描分析仪Aspex对轴承钢炉外精炼过程中的非金属夹杂物进行大面积扫描,系统研究了炉外精炼过程钢液纯净度变化,对关键工序进行氧、氮含量分析,同时利用"无水电解"提取各个工序夹杂物,以便观察夹杂物三维形貌,以指导生产实践。研究表明,LF-VD过程,夹杂物经历了Al_2O_3→MgO·Al_2O_3→CaO-MgO-Al_2O_3演变。LF精炼初期,钢液中形成大量Al_2O_3夹杂物,随着LF精炼地进行,钢液中逐渐形成MgO·Al_2O_3、钙铝酸盐、CaO-MgO-Al_2O_3等复合夹杂物,VD真空后,钢液中形成大量CaO-MgO-Al_2O_3夹杂物。LF精炼初期,钢液中夹杂物数量密度达到16.25个/mm~2,随着LF精炼的进行,夹杂物数量逐渐减少,VD破空后钢液中夹杂物数量密度降低为6.87个/mm~2,随着静搅地进行,钢液中夹杂物数量密度逐渐降低,VD吊包夹杂物数量密度增加,可能是卷渣造成。  相似文献   

17.
通过钢液与夹杂物之间的热力学平衡计算,研究了20CrMnTiH1精炼钢水中Al_2O_3夹杂物钙处理后可能变性的程度和CaS夹杂生成条件。计算结果表明,[S]0.020%~0.035%、[Al]0.02%~0.04%的钢水进行钙处理时易生成稳定的CaS,并且铝脱氧的产物Al_2O_3难以完全变性成低熔点钙铝酸盐12(CaO)·7(Al_2O_3)。为使Al_2O_3完全变性成低熔点(CaO)·(Al_2O_3)和12(CaO)·7(Al_2O_3)钙铝酸盐,在精炼过程应在低[S]和温度≥1600℃情况下对钢水进行钙处理,软吹氩搅拌后进行喂硫线操作,同时可以显著减少水口堵塞的发生。  相似文献   

18.
以SPHD钢在BOF-RH-CC工艺生产过程中夹杂物的演变为研究对象,分析了从精炼出站到连铸过程钢中T. O、[N]的变化情况,研究了夹杂物数量、尺寸分布以及成分演变规律.结果表明:从RH精炼出站到中间包,钢中T. O和[N]含量增加,单位面积夹杂物数量升高,钢水因二次氧化产生了Al_2O_3夹杂.夹杂物尺寸变化主要集中在10μm以下的夹杂物,其中小于5μm夹杂物所占比例降低,5~10μm夹杂物所占比例增多,钢包与中间包之间的保护浇铸需要加强.部分Al_2O_3夹杂可转变为低熔点且易被去除的CaO-MgO-Al_2O_3系或CaO-MgO-Al_2O_3-SiO_2系等复合夹杂,铸坯内夹杂物主要以Al_2O_3,Al_2O_3-SiO_2,CaO-SiO_2以及CaO-Al_2O_3-SiO_2等形式存在,也有附着少量MnS的Al_2O_3夹杂.  相似文献   

19.
38CrMoAl钢120t BOF-LF-RH-CC冶炼过程钢中夹杂物主要以CaS和A12O3为主,并且随着精炼的进行,夹杂物中CaS含量逐渐升高,AI2O3含量逐渐降低。通过钙处理试验,得出采用钙处理工艺,不仅不能有效变性 38CrMoAl钢中夹杂物,反而会产生更多CaS夹杂物,最终引发由CaS产生的水口结瘤。工业试验结果表明,在RH原工艺基础上取消钙处理工艺,将LF精炼结束钢水硫含量降低至0.001% -0.002%,可以很好的改善钢水浇铸性  相似文献   

20.
《炼钢》2015,(6)
对"BOF→LF→CC"流程铝脱氧造较高碱度精炼渣工艺生产60Si2MnA弹簧钢冶炼过程的洁净度进行了调研分析,并从理论上分析了冶炼过程钢中T.O、氮含量和夹杂物数量、尺寸及类型的转变过程。结果表明:冶炼过程钢中T.O含量逐渐降低,氮含量增加,盘条中平均w(T.O)=14.5×10-6,w(N)=30.4×10-6。夹杂物类型变化为Al2O3-SiO_2→Al2O3-SiO_2-Mg O-CaO四元复合夹杂物→Al2O3-SiO_2-MgO-CaO-CaS五元复合夹杂物。控制钢中w(Al)=0.03%左右,钙处理后钢水w(Ca)/w(Al)=0.08~0.11,Al2O3夹杂物能得到充分变性,形成的四元夹杂物处于较低熔点区,而五元夹杂物因含较多高熔点CaS而偏离低熔点区。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号