首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The vasodilating capability of cerebral vessels is vital to brain survival. There are multiple mechanisms participating in the regulation of cerebral vascular smooth muscle relaxation. The cyclic nucleotide-related signal transduction pathways are particularly important to the vasodilating function of cerebral arteries and arterioles. Those pathways are involved in the vasodilations elicited by a wide variety of stimuli, which include hypoxia and hypercapnia and agonist/receptor interactions (e.g. muscarinic, beta-adrenergic, and prostacyclin receptors). There is considerable control exerted upon the activities of the cyclic nucleotide signal transduction cascades. One of those control mechanisms relates to the abilities of cyclic 3'-5' adenosine monosphosphate (cAMP) and cyclic 3'-5' guanosine monophosphate (cGMP) to modulate each other's synthesis, degradation, and actions. That capacity for "crosstalk" between the two pathways provides the focus of the present review. To facilitate our discussion of cGMP/cAMP crosstalk regulation, we have placed some emphasis on hypercapnia-induced cerebral vasodilation. The review considers crosstalk at 4 different levels. First, the capacity for each cyclic nucleotide to repress the degradation of its counterpart via actions on phosphodiesterases (PDEs) is discussed. Second, consideration is given to crosstalk regulation of cGMP/cAMP synthesis. Third cGMP- or cAMP-dependent protein kinases (PKG and PKA, respectively) are discussed with respect to: (a) the potential of each cyclic nucleotide to activate the counterpart kinase, and (b) the ability of PKG: PKA to elicit common actions. Fourth, some attention is given to the role of compartmentalization of: (a) the enzymes catalyzing cyclic nucleotide synthesis and degradation, (b) the enzymes responsible for cyclic nucleotides-mediated phosphorylations, and (c) the protein targets of those kinases.  相似文献   

2.
Nitric oxide (NO) acts via soluble guanylyl cyclase to increase cyclic GMP (cGMP), which can regulate various targets including protein kinases. Western blotting showed that type II cGMP-dependent protein kinase (cGK II) is widely expressed in various brain regions, especially in the thalamus. In thalamic extracts, the phosphorylation of several proteins, including cGK II, was increased by exogenous NO or cGMP. In vivo pretreatment with a NO synthase inhibitor reduced the phosphorylation of cGK II, and this could be reversed by exogenous NO or cGMP. Conversely, brainstem electrical stimulation, which enhances thalamic NO release, caused a NO synthase-dependent increase in the phosphorylation of thalamic cGK II. These results indicate that endogenous NO regulates cGMP-dependent protein phosphorylation in the thalamus. The activation of cGKII by NO may play a role in thalamic mechanisms underlying arousal.  相似文献   

3.
Nitric oxide (NO) and cyclic guanosine 3',5'-monophosphate (cGMP) have been reported to prevent vascular smooth muscle cell (VSMC) proliferation and have beneficial effects to reduce intimal thickening in response to arterial injury. The purpose of this study was to determine whether the downstream effector molecule of NO-cGMP signaling, cyclic GMP-dependent protein kinase (PKG), regulates phenotypic modulation and proliferation in cultured rat aortic VSMC. PKG-expressing VSMC lines were created by transfection of PKG-deficient cell lines and characterized. All forms of PKG, i.e. PKG-I alpha and PKG-I beta, as well as the constitutively active catalytic domain of PKG-I, transformed dedifferentiated 'synthetic' VSMC to a more contractile-like morphology. PKG expression resulted in an increased production of the contractile phenotype marker proteins, smooth muscle myosin heavy chain-2, calponin and alpha-actin and restored the capacity of cAMP and cGMP analogues to inhibit platelet-derived growth factor (PDGF)-induced cell migration. On the other hand, PKG expression had no significant effects on PDGF-induced cell proliferation. These results suggest that PKG expression contributes to the regulation of a contractile-like phenotypic expression in cultured VSMC, and the suppression of PKG expression during cultured growth in vitro may permit the modulation of cells to a more synthetic, dedifferentiated phenotype.  相似文献   

4.
Cyclic GMP (cGMP) is a crucial intracellular messenger in neuronal, muscle, and endocrine cells. The intracellular concentration of cGMP is regulated by various neurotransmitters, including acetylcholine (ACh) and nitric oxide (NO). While much is known about the biochemical steps leading to cGMP synthesis, little is known about cGMP kinetics in intact cells. Here, we use "patch-cramming," in which an excised, inside-out membrane patch containing cyclic nucleotide-gated ion channels is used as a biosensor, to obtain the first real-time measurements of cGMP in intact cells. Patch-cramming experiments on neuroblastoma cells show that both muscarinic agonists and NO rapidly elevate cGMP. NO elicits cGMP responses repeatedly without decrement, whereas responses to muscarinic agonists exhibit a profound and prolonged desensitization. Remarkably, muscarinic agonists also cause long-term (>30 min) suppression (LTS) of cGMP responses elicited by NO. Biochemical measurements reveal that rat sympathetic neurons also exhibit LTS of cGMP, suggesting that LTS is a widespread mechanism that may contribute to synaptic plasticity.  相似文献   

5.
Studies in vitro have underestimated the importance of cGMP-dependent protein kinase (PKG) in the modulation of vascular smooth muscle cell (SMC) proliferation and apoptosis in vivo. This is attributable, in part, to a rapid decline in PKG levels as vascular SMC are passaged in culture. We used a recombinant adenovirus encoding PKG (Ad.PKG) to augment kinase activity in cultured rat pulmonary artery SMC (RPaSMC). Incubation of Ad. PKG-infected RPaSMC (multiplicity of infection = 200) with 8-Br-cGMP decreased serum-stimulated DNA synthesis by 85% and cell proliferation at day 5 by 74%. The effect of 8-Br-cGMP on DNA synthesis in Ad.PKG-infected RPaSMC was blocked by KT5823 (PKG inhibitor), but not by KT5720 (cAMP-dependent protein kinase inhibitor). A nitric oxide (NO) donor compound, S-nitrosoglutathione, at concentrations as low as 100 nM, inhibited DNA synthesis in Ad. PKG-infected RPaSMC, but not in uninfected cells or in cells infected with a control adenovirus. In addition, 8-Br-cGMP and S-nitrosoglutathione induced apoptosis in serum-deprived RPaSMC infected with Ad.PKG, but not in uninfected cells or in cells infected with a control adenovirus. These results demonstrate that modulation of PKG levels in vascular SMC can alter the sensitivity of these cells to NO and cGMP. Moreover, these observations suggest an important role for PKG in the regulation of vascular SMC proliferation and apoptosis by NO and cGMP.  相似文献   

6.
7.
Reactive oxygen species are believed to perform multiple roles during plant defense responses to microbial attack, acting in the initial defense and possibly as cellular signaling molecules. In animals, nitric oxide (NO) is an important redox-active signaling molecule. Here we show that infection of resistant, but not susceptible, tobacco with tobacco mosaic virus resulted in enhanced NO synthase (NOS) activity. Furthermore, administration of NO donors or recombinant mammalian NOS to tobacco plants or tobacco suspension cells triggered expression of the defense-related genes encoding pathogenesis-related 1 protein and phenylalanine ammonia lyase (PAL). These genes were also induced by cyclic GMP (cGMP) and cyclic ADP-ribose, two molecules that can serve as second messengers for NO signaling in mammals. Consistent with cGMP acting as a second messenger in tobacco, NO treatment induced dramatic and transient increases in endogenous cGMP levels. Furthermore, NO-induced activation of PAL was blocked by 6-anilino-5,8-quinolinedione and 1H-(1,2,4)-oxadiazole[4,3-a]quinoxalin-1-one, two inhibitors of guanylate cyclase. Although 6-anilino-5,8-quinolinedione fully blocked PAL activation, inhibition by 1H-(1,2,4)-oxadiazole[4, 3-a]quinoxalin-1-one was not entirely complete, suggesting the existence of cGMP-independent, as well as cGMP-dependent, NO signaling. We conclude that several critical players of animal NO signaling are also operative in plants.  相似文献   

8.
It is generally accepted that cGMP mediates the vascular relaxant effects of nitrovasodilators such as sodium nitroprusside (SNP) and nitroglycerin (NTG). It has been suggested that the relaxant effects of cGMP are mediated via activation of a specific, cGMP-dependent protein kinase (PKG). The objective of this study was to determine whether PKG can be activated by SNP and by NTG in intact strips of rabbit aorta and, if so, whether a good correlation exists between activation of PKG and relaxation of the arteries by the nitrovasodilators. PKG activity was measured by means of a recently described assay using a peptide substrate, BPDEtide, that exhibits good sensitivity and specificity for PKG compared with other protein kinases. Verification of the specificity of the assay for PKG was obtained using MonoQ chromatography to resolve soluble extracts of the rabbit aorta and subsequent immunoblotting to identify the kinase by means of a PKG-specific antibody. The role of PKG in vascular relaxation was investigated by simultaneously monitoring the effects of SNP and NTG on cGMP levels, PKG activity ratios and tension in isolated strips of rabbit aorta exposed to varying concentrations of the nitrovasodilators for varying times. The results indicate that PKG can be activated in a concentration- and time-dependent manner by both SNP and NTG in intact vascular preparations and that reasonably good correlations exist between PKG activation and relaxation in these experiments. Although a causal relationship between the two parameters has not been definitely established, these results are consistent with the proposed role for PKG as a mediator of the vascular relaxant effects of cGMP-elevating agents such as SNP and NTG.  相似文献   

9.
Sheep learn to recognize the odours of their lambs within two hours of giving birth, and this learning involves synaptic changes within the olfactory bulb. Specifically, mitral cells become increasingly responsive to the learned odour, which stimulates release of both glutamate and GABA (gamma-aminobutyric acid) neurotransmitters from the reciprocal synapses between the excitatory mitral cells and inhibitory granule cells. Nitric oxide (NO) has been implicated in synaptic plasticity in other regions of the brain as a result of its modulation of cyclic GMP levels. Here we investigate the possible role of NO in olfactory learning. We find that the neuronal enzyme nitric oxide synthase (nNOS) is expressed in both mitral and granule cells, whereas the guanylyl cyclase subunits that are required for NO stimulation of cGMP formation are expressed only in mitral cells. Immediately after birth, glutamate levels rise, inducing formation of NO and cGMP, which potentiate glutamate release at the mitral-to-granule cell synapses. Inhibition of nNOS or guanylyl cyclase activity prevents both the potentiation of glutamate release and formation of the olfactory memory. The effects of nNOS inhibition can be reversed by infusion of NO into the olfactory bulb. Once memory has formed, however, inhibition of nNOS or guanylyl cyclase activity cannot impair either its recall or the neurochemical release evoked by the learned lamb odour. Nitric oxide therefore seems to act as a retrograde and/or intracellular messenger, being released from both mitral and granule cells to potentiate glutamate release from mitral cells by modulating cGMP concentrations. We propose that the resulting changes in the functional circuitry of the olfactory bulb underlie the formation of olfactory memories.  相似文献   

10.
Previous studies have demonstrated that nitric oxide (NO) influences Leydig cell function. Here we provide evidence for NO production and activity in seminiferous tubules and blood vessels of the human testis. By immunohistochemistry, the soluble guanylyl cyclase (sGC), the intracellular NO receptor, and the second messenger, cyclic guanosine monophosphate (cGMP), were detected in myofibroblasts of the peritubular lamina propria in Sertoli cells, as well as in endothelial and smooth muscle cells of testicular blood vessels. Performed with isolated tubules and blood vessels, the biological activity of sGC could be proved by cGMP generation in response to treatments with the NO donor, sodium nitroprusside. The endothelial and neuronal subtypes of NO synthase (NOS) were localized immunohistochemically to the same cell types that express sGC and cGMP. In isolated tubules and vessels, the presence of endothelial NOS and neuronal NOS was confirmed by immunoblotting, and NOS activity was demonstrated by decreased cGMP production upon incubation with the NOS inhibitor L-nitro arginine methylester. These findings show that peritubular cells, Sertoli cells, and testicular blood vessels may be sites of NO production and activity, possibly involved in relaxation of seminiferous tubules and blood vessels to modulate sperm transport and testicular blood flow, respectively.  相似文献   

11.
12.
Carbon monoxide (CO) is an activator of soluble guanylyl cyclase and is implicated as a neuronal messenger. CO production, nitric oxide synthase (NOS) activity, and guanosine 3',5'-monophosphate (cGMP) levels were quantitated in cerebellar granule cell cultures. Metabolic labeling experiments enabled the direct measurement of neuronal CO production in vitro. CO production is significant, and peaked during early stages of culture. NOS activity and cGMP levels synchronously increased as cells matured. Whereas inhibition of NOS depleted cGMP in mature cultures, inhibitors of CO production potentiated the nitric oxide (NO)-mediated cGMP increase. Exogenous CO at similar concentrations to endogenous levels blocked the NO-mediated cGMP increase. These results directly demonstrate that endogenous neuronal CO production is high and indicate that while NO is the major regulator of cGMP in these neurons, CO may modulate the NO-cGMP signaling system.  相似文献   

13.
N-methyl-D-aspartate (NMDA) glutamate receptor-mediated increases in intracellular calcium are thought to play a critical role in synaptic plasticity. The mechanisms by which changes in cytoplasmic calcium transmit the glutamate signal to the nucleus, which is ultimately important for long-lasting neuronal responses, are poorly understood. We show that NMDA receptor stimulation leads to activation of p21(ras) (Ras) through generation of nitric oxide (NO) via neuronal NO synthase. The competitive NO synthase inhibitor, L-nitroarginine methyl ester, prevents Ras activation elicited by NMDA and this effect is competitively reversed by the NO synthase substrate, L-arginine. NMDA receptor stimulation fails to activate Ras in neuronal cultures from mice lacking neuronal NO synthase. NMDA-induced Ras activation occurs through a cGMP-independent pathway as 1H-[1,2,4]oxadiazolo[4,3-alpha]quinoxalin-1-one (ODQ), a potent and selective inhibitor of guanylyl cyclase, has no effect on NMDA receptor-induced activation of Ras, and the cell-permeable cGMP analog, 8Br-cGMP, does not activate Ras. Furthermore, NO directly activates immunoprecipitated Ras from neurons. NMDA also elicits tyrosine phosphorylation of extracellular signal-regulated kinases, a downstream effector pathway of Ras, through a NO/non-cGMP dependent mechanism, thus supporting the physiologic relevance of endogenous NO regulation of Ras. These results suggest that Ras is a physiologic target of endogenously produced NO and indicates a signaling pathway for NMDA receptor activation that may be important for long-lasting neuronal responses.  相似文献   

14.
15.
Atrial natriuretic factor (ANF), a cardiac peptide hormone with potent natriuretic and vasodilator actions, mediates its biologic responses via increases in intracellular cyclic guanosine monophosphate (cGMP). Recognizing that phosphodiesterases degrade cGMP and that congestive heart failure (CHF) is characterized by reduced renal responses to ANF, the authors hypothesized that cGMP phosphodiesterases limit the renal actions of exogenous and endogenous ANF in the presence of experimental CHF. In anesthetized dogs with severe CHF and avid sodium retention produced by rapid ventricular pacing, the authors explored the renal actions of M&B 22,948 (Rh?ne-Poulenc, Essex, UK), an inhibitor of cGMP-specific phosphodiesterases. High-dose intrarenal cGMP phosphodiesterase inhibition (PDI), with minimal effects upon systemic hemodynamics and hormones, significantly enhanced sodium excretion. This occurred primarily by decreasing distal nephron sodium reabsorption while enhancing renal cGMP generation. In separate groups of dogs, low-dose intrarenal cGMP PDI potentiated the actions of exogenous ANF on glomerular filtration and distal nephron sodium reabsorption, leading to enhanced natriuresis in the presence or absence of severe CHF. These studies support a link between ANF and the renal actions of cGMP PDI, and indicate that cGMP phosphodiesterases may contribute to sodium retention in advanced CHF by limiting the renal actions of increased endogenous ANF.  相似文献   

16.
There is good evidence that in vascular smooth muscle, the relaxant effects of sodium nitroprusside (SNP) are mediated by increases in cGMP levels and activation of cGMP-dependent protein kinase (PKG). However, in rat vas deferens and rat distal colon, cGMP-elevating agents such as SNP and atrial natriuretic factor (ANF) have been shown to elevate cGMP without inducing relaxation. The lack of relaxation might be explained by either lack of activation of PKG by these agents or low levels of PKG in these tissues. The object of the present study was to investigate these possibilities by simultaneously monitoring cGMP levels, PKG activity and contractility in isolated strips of rat vas deferens, rat proximal colon and distal colon exposed to high concentrations of SNP or ANF. Verification of the specificity of the assay for PKG was obtained using MonoQ chromatography to resolve soluble smooth muscle extracts, followed by immunoblotting with a PKG-specific antibody to identify the kinase. In rat vas deferens, 5 mM SNP increased cGMP levels (14-fold) and PKG activity ratios (3.4-fold) but did not inhibit phenylephrine-induced contractions. In both rat proximal and rat distal colon, 100 nM ANF significantly elevated cGMP levels and PKG activity ratios, but only in the proximal colon was inhibition of spontaneous contractions observed. Total PKG activity was much lower (approximately 16 pmol PO4/min/mg protein) in rat vas deferens, which was not relaxed by SNP, than in rabbit aorta (approximately 148 pmol PO4/min/mg), which was relaxed. However, in the rat proximal colon, despite low PKG levels (approximately 11 pmole/min/mg), ANF did inhibit contractions. Thus the inability of the cGMP-elevating agents SNP and ANF to inhibit contractions in rat vas deferens and rat distal colon cannot be explained by either of the possibilities suggested above.  相似文献   

17.
Regulation of ionic currents in the heart is partly achieved by signaling cascades which alter intracellular levels of cyclic nucleotides. Changes in cyclic nucleotide levels can regulate channels either directly, like the direct binding of cAMP to the i(f) channel in pacemaker tissues, or indirectly through phosphorylation of channels by cAMP-dependent, or cGMP-dependent protein kinases. These types of regulation generally alter the voltage sensitivities of channels. A class of voltage-insensitive channels, first discovered in retinal rods and olfactory neurons, were recently identified in the heart. These channels are opened by the direct binding of cyclic nucleotides, providing a means of regulating ionic currents outside the influence of membrane voltage. Since different isoforms have different affinities for cAMP and cGMP, it is important to determine which isoforms are expressed in heart in order to predict their roles in heart function. We have cloned the olfactory channel from mouse heart, and find that although the message is very rare, Western blot analysis indicates the olfactory channel protein is stable in heart sarcolemma. Our data also suggest the olfactory channel protein forms homomeric channels in the heart since other isoforms or splice variants were not detected either by PCR amplification or by RNase protection. In addition, we have isolated and sequenced the mouse olfactory cyclic nucleotide-gated channel gene, and show the genomic organization is remarkably similar to that found in the human retinal channel gene. Part of this work was presented in abstract form.  相似文献   

18.
Vascular endothelial growth factor (VEGF) is a regulator of vasculogenesis and angiogenesis. To investigate the role of nitric oxide (NO) in VEGF-induced proliferation and in vitro angiogenesis, human umbilical vein endothelial cells (HUVEC) were used. VEGF stimulated the growth of HUVEC in an NO-dependent manner. In addition, VEGF promoted the NO-dependent formation of network-like structures in HUVEC cultured in three dimensional (3D) collagen gels. Exposure of cells to VEGF led to a concentration-dependent increase in cGMP levels, an indicator of NO production, that was inhibited by nitro-L-arginine methyl ester. VEGF-stimulated NO production required activation of tyrosine kinases and increases in intracellular calcium, since tyrosine kinase inhibitors and calcium chelators attenuated VEGF-induced NO release. Moreover, two chemically distinct phosphoinositide 3 kinase (PI-3K) inhibitors attenuated NO release after VEGF stimulation. In addition, HUVEC incubated with VEGF for 24 h showed an increase in the amount of endothelial NO synthase (eNOS) protein and the release of NO. In summary, both short- and long-term exposure of human EC to VEGF stimulates the release of biologically active NO. While long-term exposure increases eNOS protein levels, short-term stimulation with VEGF promotes NO release through mechanisms involving tyrosine and PI-3K kinases, suggesting that NO mediates aspects of VEGF signaling required for EC proliferation and organization in vitro.  相似文献   

19.
Accumulating evidence indicates that protein kinase C (PKC)-dependent, Ca2+-independent smooth muscle contraction plays the central role in the occurrence of chronic vasospasm following aneurysmal subarachnoid hemorrhage. As far as we know, the nitric oxide/ cyclic guanosine monophosphate (cGMP)/protein kinase G (PKG) system comprises the most efficacious inhibitory mechanism against the PKC-dependent contractile mechanism, and the myogenic tonus of normal cerebral arteries is thought to be maintained on the balance between these systems. Recent studies indicate that in spastic cerebral arteries, the rise in the intracellular diacylglycerol level causes PKC activation presumably owing to the overexpression of endothelin (ET)-1 as well as the generation of free radicals, whereas the cGMP level is inversely reduced owing to the inactivation of soluble guanylate cyclase through some as yet unknown mechanism. The resultant loss of balance between the two systems is considered to culminate in the occurrence of chronic vasospasm lasting for nearly 2 weeks. Based on the above concept, recent papers concerning the effects of reactive oxygen species on the arterial smooth muscle, alterations of various membrane ion channels, particularly of adenosine triphospate (ATP)-activated potassium channels in spastic arteries, the preventive effects of ET antagonists on vasospasm, and the causative role of ET-1 were reviewed in the present article. The roles of the above spasmogenic factors or mechanisms may be more clearly understood on the basis of the antagonistic interrelation between the PKC and the PKG systems, which exert diverse influences on the force-generating system as well as on its multifarious regulatory mechanisms in smooth muscle cells.  相似文献   

20.
Cyclic adenosine diphosphate ribose (cADPR) is a potent endogenous calcium-mobilizing agent synthesized from beta-NAD+ by ADP-ribosyl cyclases in sea urchin eggs and in several mammalian cells (Galione, A., and White, A. (1994) Trends Cell Biol. 4, 431 436). Pharmacological studies suggest that cADPR is an endogenous modulator of Ca2+-induced Ca2+ release mediated by ryanodine-sensitive Ca2+ release channels. An unresolved question is whether cADPR can act as a Ca2+-mobilizing intracellular messenger. We show that exogenous application of nitric oxide (NO) mobilizes Ca2+ from intracellular stores in intact sea urchin eggs and that it releases Ca2+ and elevates cADPR levels in egg homogenates. 8-Amino-cADPR, a selective competitive antagonist of cADPR-mediated Ca2+ release, and nicotinamide, an inhibitor of ADP-ribosyl cyclase, inhibit the Ca2+-mobilizing actions of NO, while, heparin, a competitive antagonist of the inositol 1,4,5-trisphosphate receptor, did not affect NO-induced Ca2+ release. Since the Ca2+-mobilizing effects of NO can be mimicked by cGMP, are inhibited by the cGMP-dependent-protein kinase inhibitor, Rp-8-pCPT-cGMPS, and in egg homogenates show a requirement for the guanylyl cyclase substrate, GTP, we suggest a novel action of NO in mobilizing intracellular calcium from microsomal stores via a signaling pathway involving cGMP and cADPR. These results suggest that cADPR has the capacity to act as a Ca2+-mobilizing intracellular messenger.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号