首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The red/far-red reversible phytochromes play a central role in regulating the development of plants in relation to their light environment. Studies on the roles of different members of the phytochrome family have mainly focused on light-labile, phytochrome A and light-stable, phytochrome B. Although these two phytochromes often regulate identical responses, they appear to have discrete photosensory functions. Thus, phytochrome A predominantly mediates responses to prolonged far-red light, as well as acting in a non-red/far-red-reversible manner in controlling responses to light pulses. In contrast, phytochrome B mediates responses to prolonged red light and acts photoreversibly under light-pulse conditions. However, it has been reported that rice (Oryza sativa L.) phytochrome A operates in a classical red/far-red reversible fashion following its expression in transgenic tobacco plants. Thus, it was of interest to determine whether transgenic rice phytochrome A could substitute for loss of phytochrome B in phyB mutants of Arabidopsis thaliana (L.) Heynh. We have observed that ectopic expression of rice phytochrome A can correct the reduced sensitivity of phyB hypocotyls to red light and restore their response to end-of-day far-red treatments. The latter is widely regarded as a hallmark of phytochrome B action. However, although transgenic rice phytochrome A can correct other aspects of elongation growth in the phyB mutant it does not restore other responses to end-of-day far-red treatments nor does it restore responses to low red:far-red ratio. Furthermore, transgenic rice phytochrome A does not correct the early-flowering phenotype of phyB seedlings.  相似文献   

2.
The Ma3 gene is one of six genes that regulate the photoperiodic sensitivity of flowering in sorghum (Sorghum bicolor [L.] Moench). The ma3R mutation of this gene causes a phenotype that is similar to plants that are known to lack phytochrome B, and ma3 sorghum lacks a 123-KD phytochrome that predominates in light-grown plants and that is present in non-ma3 plants. A population segregating for Ma3 and ma3 was created and used to identify two randomly amplified polymorphic DNA markers linked to Ma3. These two markers were cloned and mapped in a recombinant inbred population as restriction fragment length polymorphisms. cDNA clones of PHYA and PHYC were cloned and sequenced from a cDNA library prepared from green sorghum leaves. Using a genome-walking technique, a 7941-bp partial sequence of PHYB, was determined from genomic DNA from ma3 sorghum. PHYA, PHYB, and PHYC all mapped to the same linkage group. The Ma3-linked markers mapped with PHYB more than 121 centimorgans from PHYA and PHYC. A frameshift mutation resulting in a premature stop codon was found in the PHYB sequence from ma3 sorghum. Therefore, we conclude that the Ma3 locus in sorghum is a PHYB gene that encodes a 123-kD phytochrome.  相似文献   

3.
4.
To investigate the biological functions of phytochromes in monocots, we generated, by electric discharge particle bombardment, transgenic rice (Oryza sativa cv Gulfmont) that constitutively expresses the oat phytochrome A apoprotein. The introduced 124-kD polypeptide bound chromophore and assembled into a red- and far-red-light-photoreversible chromoprotein with absorbance spectra indistinguishable from those of phytochrome purified from etiolated oats. Transgenic lines expressed up to 3 and 4 times more spectrophotometrically detectable phytochrome than wild-type plants in etiolated and green seedlings, respectively. Upon photo-conversion to the far-red-absorbing form of phytochrome, oat phytochrome A was degraded in etiolated seedlings with kinetics similar to those of endogenous rice phytochromes (half-life approximately 20 min). Although plants overexpressing phytochrome A were phenotypically indistinguishable from wild-type plants when grown under high-fluence white light, they were more sensitive as etiolated seedlings to light pulses that established very low phytochrome equilibria. This indicates that the introduced oat phytochrome A was biologically active. Thus, rice ectopically expressing PHY genes may offer a useful model to help understand the physiological functions of the various phytochrome isoforms in monocotyledonous plants.  相似文献   

5.
The discovery of cyanobacterial phytochrome histidine kinases, together with the evidence that phytochromes from higher plants display protein kinase activity, bind ATP analogs, and possess C-terminal domains similar to bacterial histidine kinases, has fueled the controversial hypothesis that the eukaryotic phytochrome family of photoreceptors are light-regulated enzymes. Here we demonstrate that purified recombinant phytochromes from a higher plant and a green alga exhibit serine/threonine kinase activity similar to that of phytochrome isolated from dark grown seedlings. Phosphorylation of recombinant oat phytochrome is a light- and chromophore-regulated intramolecular process. Based on comparative protein sequence alignments and biochemical cross-talk experiments with the response regulator substrate of the cyanobacterial phytochrome Cph1, we propose that eukaryotic phytochromes are histidine kinase paralogs with serine/threonine specificity whose enzymatic activity diverged from that of a prokaryotic ancestor after duplication of the transmitter module.  相似文献   

6.
As assayed by western blot analysis, red light induces the appearance of epitopes recognized by anti-phosphotyrosine antibodies in several pea nuclear proteins. The immunostaining is blocked by preadsorbing the antibodies with phosphotyrosine but not by preadsorbing them with phosphoserine or phosphothreonine. This light response is observed whether the red light irradiation is given to pea plumules or nuclei isolated from the plumules. The red-light-induced response seen in plumules is reversible by a subsequent far-red-light irradiation, indicating that the likely photoreceptor for this response may be phytochrome. By immunoblot analysis pea phytochrome A, but not phytochrome B, can be detected in proteins extracted from pea nuclear chromatin-matrix preparations. Phytochrome A and the protein bands immunostained by anti-phosphotyrosine antibodies can be solubilized from unirradiated pea chromatin by 0.3 M NaCl, but irradiating this preparation with red light does not induce the appearance of phosphotyrosine-like epitopes in any nuclear proteins. These results suggest that the association of phytochrome with purified pea nuclei is such that its conversion to the far-red light-absorbing form can induce a post-translational epitope change in nuclear proteins in vivo.  相似文献   

7.
Blue light responses in higher plants can be mediated not only by specific blue light receptors, but also by the red/far-red photoreversible phytochrome system. The question of interdependence between these photoreceptors has been debated over many years. The availability of Arabidopsis mutants for the blue light receptor CRY1 and for the two major phytochromes phyA and phyB allows a reinvestigation of this question. The analysis of photocontrol of seed germination, inhibition of hypocotyl growth and anthocyanin accumulation clearly demonstrates that (i) phyA shows a strong control in blue light responses especially at low fluence rates; (ii) phyB mediated induction reactions can be reversed by subsequent blue light irradiations; and (iii) CRY1 mediates blue light controlled inhibition of hypocotyl growth only at fluence rates higher than 5 mumol m-2s-1 and independently of phytochrome A and B.  相似文献   

8.
A cDNA clone encoding phytochrome (apoprotein) of the zygnematophycean green alga Mougeotia scalaris has been isolated and sequenced. The clone consisted of 3372 bp, encoded 1124 amino acids, and showed strainspecific nucleotide exchanges for M. scalaris, originating from different habitats. No indication was found of multiple phytochrome genes in Mougeotia. The 5' non-coding region of the Mougeotia PHY cDNA harbours a striking stem-loop structure. Homologies with higher-plant phytochromes were 52-53% for PHYA and 57-59% for PHYB. Highest homology scores were found with lower-plant phytochromes, for example 67% for Selaginella (Lycopodiopsida), 64% for Physcomitrella (Bryopsida) and 73% for Mesotaenium (Zygnematophyceae). In an unrooted phylogenetic tree, the position of Mougeotia PHY appeared most distant to all other known PHYs. The amino acids Gly-Val in the chromophore-binding domain (-Arg-Gly-Val-His-Gly-Cys-) were characteristic of the zygnematophycean PHYs known to date. There was no indication of a transmembrane region in Mougeotia phytochrome in particular, but a carboxyl-terminal 16-mer three-fold repeat in both, Mougeotia and Mesotaenium PHYs may represent a microtubule-binding domain. Unexpected for a non-angiosperm phytochrome, its expression was autoregulated in Mougeotia in a red/far-red reversible manner: under Pr conditions, phytochrome mRNA levels were tenfold higher than under Pfr conditions.  相似文献   

9.
Circadian clocks are synchronized by environmental cues such as light. Photoreceptor-deficient Arabidopsis thaliana mutants were used to measure the effect of light fluence rate on circadian period in plants. Phytochrome B is the primary high-intensity red light photoreceptor for circadian control, and phytochrome A acts under low-intensity red light. Cryptochrome 1 and phytochrome A both act to transmit low-fluence blue light to the clock. Cryptochrome 1 mediates high-intensity blue light signals for period length control. The presence of cryptochromes in both plants and animals suggests that circadian input pathways have been conserved throughout evolution.  相似文献   

10.
Phytochrome A (phyA) and phytochrome B photoreceptors have distinct roles in the regulation of plant growth and development. Studies using specific photomorphogenic mutants and transgenic plants overexpressing phytochrome have supported an evolving picture in which phyA and phytochrome B are responsive to continuous far-red and red light, respectively. Photomorphogenic mutants of Arabidopsis thaliana that had been selected for their inability to respond to continuous irradiance conditions were tested for their ability to carry out red-light-induced enhancement of phototropism, which is an inductive phytochrome response. We conclude that phyA is the primary photoreceptor regulating this response and provide evidence suggesting that a common regulatory domain in the phyA polypeptide functions for both high-irradiance and inductive phytochrome responses.  相似文献   

11.
Arabidopsis thaliana seeds imbibed for a short duration show phytochrome B (PhyB)-specific photo-induction of germination. Using this system, the relationship was determined between the amount of PhyB in seeds and photon energy required for PhyB-specific germination in two transgenic Arabidopsis lines transformed with either the Arabidopsis PhyB cDNA (ABO) or the rice PhyB cDNA (RBO). Immunochemical detection of PhyB apoprotein (PHYB) showed that the expression level of PHYB in ABO seeds was at least two times higher than that in the wild-type seeds, but in RBO seeds the PHYB level was indistinguishable from that in wild-type seeds. The photon fluence required for induction and photoreversible inhibition of germination was examined using the Okazaki large spectrograph. At the wavelengths of 400-710 nm, the ABO seeds required significantly less photon fluence than wild-type seeds for induction of germination, whereas the RBO seeds required similar fluence to wild-type seeds. A critical threshold wavelength for either induction or inhibition of germination of ABO seeds shifted towards the longer wavelengths relative to wild-type seeds. By assuming that PhyA and PhyB are similar in their photochemical parameters, amounts of Pfr at each wavelength were calculated. The photon fluence required for 50% germination was equivalent to the fluence generating a Pfr/Ptot ratio of 0.21-0.43 in wild-type seeds, and of 0.035-0.056 in ABO seeds. These results indicate that PhyB-specific seed germination is not strictly a function of the Pfr/Ptot ratio, but is probably a function of the absolute Pfr concentration.  相似文献   

12.
Ambient light controls the development and physiology of plants. The Arabidopsis thaliana photoreceptor phytochrome B (PHYB) regulates developmental light responses at both seedling and adult stages. To identify genes that mediate control of development by light, we screened for suppressors of the long hypocotyl phenotype caused by a phyB mutation. Genetic analyses show that the shy (short hypocotyl) mutations we have isolated fall in several loci. Phenotypes of the mutants suggest that some of the genes identified have functions in control of light responses. Other loci specifically affect cell elongation or expansion.  相似文献   

13.
In early seedling development, far-red-light-induced deetiolation is mediated primarily by phytochrome A (phyA), whereas red-light-induced deetiolation is mediated primarily by phytochrome B (phyB). To map the molecular determinants responsible for this photosensory specificity, we tested the activities of two reciprocal phyA/phyB chimeras in diagnostic light regimes using overexpression in transgenic Arabidopsis. Although previous data have shown that the NH2-terminal halves of phyA and phyB each separately lack normal activity, fusion of the NH2-terminal half of phyA to the COOH-terminal half of phyB (phyAB) and the reciprocal fusion (phyBA) resulted in biologically active phytochromes. The behavior of these two chimeras in red and far-red light indicates: (i) that the NH2-terminal halves of phyA and phyB determine their respective photosensory specificities; (ii) that the COOH-terminal halves of the two photoreceptors are necessary for regulatory activity but are reciprocally inter-changeable and thus carry functionally equivalent determinants; and (iii) that the NH2-terminal halves of phyA and phyB carry determinants that direct the differential light lability of the two molecules. The present findings suggest that the contrasting photosensory information gathered by phyA and phyB through their NH2-terminal halves may be transduced to downstream signaling components through a common biochemical mechanism involving the regulatory activity of the COOH-terminal domains of the photoreceptors.  相似文献   

14.
Full-length Avena sativa (oat) phytochrome A (ASPHYA) was expressed in the yeast Saccharomyces cerevisiae and purified to apparent homogeneity. Expression of an ASPHYA cDNA that encoded the full-length photoreceptor with a 15 amino acid 'strep-tag' peptide at its C-terminus produced a single polypeptide with a molecular mass of 124 kDa. This strep-tagged polypeptide (ASPHYA-ST) bound tightly to streptavidin agarose and was selectively eluted using diaminobiotin, with a chromatographic efficiency of 45%. Incubation of ASPHYA-ST with phytochromobilin (P phi B) and the unnatural chromophore precursors, phycocyanobilin (PCB) and phycoerythrobilin (PEB), produced covalent adducts that were similarly affinity purified. Both P phi B and PCB adducts of ASPHYA-ST were photoactive--the P phi B adduct displaying spectrophotometric properties nearly indistinguishable from those of the native photoreceptor, and the PCB adduct exhibiting blue-shifted absorption maxima. Although the PEB adduct of ASPHYA-ST was photochemically inactive, it was intensely fluorescent with an excitation maximum at 576 nm and emission maxima at 586 nm. The superimposability of its absorption and fluorescence excitation spectra established that a single biliprotein species was responsible for fluorescence from the adduct produced when ASPHYA-ST was incubated with PEB. Steric exclusion HPLC also confirmed that ASPHYA-ST and its three bilin adducts were homodimers, as has been established for phytochrome A isolated from natural sources. The ability to express and purify recombinant phytochromes with biochemical properties very similar to those of the native molecule should facilitate detailed structural analysis of this important class of photoreceptors.  相似文献   

15.
The phytochrome-encoding gene Cerpu;PHY;2 (CP2) of the moss Ceratodon purpureus was heterologously expressed in Saccharomyces cerevisiae as a polyhistidine-tagged apoprotein and assembled with phytochromobilin (P phi B) and phycocyanobilin (PCB). Nickel-affinity chromatography yielded a protein fraction containing approximately 80% phytochrome. The holoproteins showed photoreversibility with both chromophores. Difference spectra gave maxima at 644/716 nm (red-absorbing phytochrome [Pr]/far-red-absorbing phytochrome [Pfr]) for the PCB adduct, and 659/724 nm for the P phi B-adduct, the latter in close agreement with values for phytochrome extracted from Ceratodon itself, implying that P phi B is the native chromophore in this moss species. Immunoblots stained with the antiphytochrome antibody APC1 showed that the recombinant phytochrome had the same molecular size as phytochrome from Ceratodon extracts. Further, the mobility of recombinant CP2 holophytochrome on native size-exclusion chromatography was similar to that of native oat phytochrome, implying that CP2 forms a dimer. Kinetics of absorbance changes during the Pr-->Pfr photoconversion of the PCB adduct, monitored between 620 and 740 nm in the microsecond range, revealed the rapid formation of a red-shifted intermediate (I700), decaying with a time constant of approximately 110 microseconds. This is similar to the behavior of phytochromes from higher plants when assembled with the same chromophore. When following the formation of the Pfr state, two major processes were identified (with time constants of 3 and 18 ms) that are followed by slow reactions in the range of 166 ms and 8 s, respectively, albeit with very small amplitudes.  相似文献   

16.
Plant responses to red and far-red light are mediated by a family of photoreceptors called phytochromes. Arabidopsis thaliana seedlings lacking one of the phytochromes, phyB, have elongated hypocotyls and other tissues, suggesting that they may have an alteration in hormone physiology. We have studied the possibility that phyB mutations affect seedling gibberellin (GA) perception and metabolism by testing the responsiveness of wild-type and phyB seedlings to exogenous GAs. The phyB mutant elongates more than the wild type in response to the same exogenous concentrations of GA3 or GA4, showing that the mutation causes an increase in responsiveness to GAs. Among GAs that we were able to detect, we found no significant difference in endogenous levels between wild-type and phyB mutant seedlings. However, GA4 levels were below our limit of detectability, and the concentration of that active GA could have varied between wild-type and phyB mutant seedlings. These results suggest that, although GAs are required for hypocotyl cell elongation, phyB does not act primarily by changing total seedling GA levels but rather by decreasing seedling responsiveness to GAs.  相似文献   

17.
Gene conversion was first defined in yeast as a type of homologous recombination in which the donor sequence does not change. In chicken B cells, gene conversion builds the antigen receptor repertoire by introducing sequence diversity into the immunoglobulin genes. Immunoglobulin gene conversion continues at high frequency in an avian leukosis virus induced chicken B cell line. This cell line can be modified by homologous integration of transfected DNA constructs offering a model system for studying gene conversion in higher eukaryotes. In search for genes which might participate in chicken immunoglobulin gene conversion, we have identified chicken counterparts of the yeast RAD51, RAD52, and RAD54 genes. Disruption and overexpression of these genes in the chicken B cell line may clarify their role in gene conversion and gene targeting.  相似文献   

18.
Cecropin B is a small antibacterial peptide from the giant silkmoth Hyalophora cecropia. To reveal the potential of this peptide for engineering bacterial disease resistance into crops, several cecropin B gene constructs were made either for expression in the cytosol or for secretion. All constructs were cloned in a plant expression vector and introduced in tobacco via Agrobacterium tumefaciens. A cDNA-derived cecropin B gene construct lacking the amino-terminal signal peptide was poorly expressed in transgenic plants at the mRNA level, whereas plants harbouring a full-length cDNA-derived construct containing the insect signal peptide, showed increased cecropin B-mRNA levels. Highest expression was found in plants harbouring a construct with a plant-gene-derived signal peptide. In none of the transgenic plants could the cecropin B peptide be detected. This is most likely caused by breakdown of the peptide by plant endogenous proteases, since a chemically synthesized cecropin B peptide was degraded within seconds in various plant cell extracts. This degradation could be prevented by the addition of specific protease inhibitors and by boiling the extract prior to adding the peptide. In addition, anionic detergents, in contrast to cationic, zwitter-ionic or non-ionic detergents, could prevent this degradation. Nevertheless, transgenic tobacco plants were evaluated for resistance to Pseudomonas solanacearum, the causal agent of bacterial wilt of many crops, and P. syringae pv. tabaci, the causal agent of bacterial wildfire, which are highly susceptible to cecropin B in vitro. No resistance was found. These experiments indicate that introduction and expression of cecropin B genes in tobacco does not result in detectable cecropin B protein levels and resistance to bacterial infections, most likely due to degradation of the protein by endogenous proteases.  相似文献   

19.
Phytochromes are a photoreversible photochromic light switch for photomorphogenesis in plants. The molecular structure and functional mechanism of phytochromes are not fully understood. On the basis of complete mapping of total tryptic digest of the iodoacetamide-modified oat phytochrome A (phyA), the molecular surface topography of phyA was probed by specific chemical modification of cysteine residues with [14C]iodoacetamide. Under native conditions, only two cysteines (Cys-158 and Cys-311) of eleven half-cystines of the N-terminal chromophore binding domain were modified to a significant extent. In the C-terminal domain, six cysteine residues (Cys-715, Cys-774, Cys-809, Cys-869, Cys-961, Cys-995) were readily accessible to iodoacetamide. Among the reactive cysteine residues, only cysteine-311 displayed reactivity that was dependent on the photochromic form (Pr left arrow over right arrow Pfr) of the photoreceptor. Surprisingly, the modification of Cys-311 in the vicinity of the chromophore attachment site (Cys-321) did not have any detectable effect on spectral properties of phyA. Most of the cysteines of the N-terminal domain (Cys-83, Cys-175, Cys-291, Cys-370, Cys-386, Cys-445, Cys-506) are deeply buried in the core of the chromophore binding domain, as they can be modified only after denaturation of the chromoprotein. In the C-terminal domain, modification of only one cysteine residue (Cys-939) required protein denaturation. Since all 22 half-cystines can be modified with iodoacetamide without reduction of the chromoprotein, it follows that oat phyA does not have any disulfide bonds. We found that Cys-311, Cys-774, Cys-961, and Cys-995 could be easily partially oxidized under the conditions used for phytochrome isolation. The surface topography/conformation of oat phyA and its role in protein-protein recognition in phytochrome-mediated signal transduction are discussed in terms of the relative reactivity of cysteine residues.  相似文献   

20.
A new mutant called psi2 (for phytochrome signaling) was isolated by screening for elevated activity of a chlorophyll a/b binding protein-luciferase (CAB2-LUC) transgene in Arabidopsis. This mutant exhibited hypersensitive induction of CAB1, CAB2, and the small subunit of ribulose-1,5-bisphosphate carboxylase (RBCS) promoters in the very low fluence range of red light and a hypersensitive response in hypocotyl growth in continuous red light of higher fluences. In addition, at high- but not low-light fluence rates, the mutant showed light-dependent superinduction of the pathogen-related protein gene PR-1a and developed spontaneous necrotic lesions in the absence of any pathogen. Expression of genes responding to various hormone and environmental stress pathways in the mutant was not significantly different from that of the wild type. Analysis of double mutants demonstrated that the effects of the psi2 mutation are dependent on both phytochromes phyA and phyB. The mutation is recessive and maps to the bottom of chromosome 5. Together, our results suggest that PSI2 specifically and negatively regulates both phyA and phyB phototransduction pathways. The induction of cell death by deregulated signaling pathways observed in psi2 is reminiscent of retinal degenerative diseases in animals and humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号