首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
通过SEM、EDS和大样电解试验对28MnCr5冶炼过程中夹杂物的大小、形貌、数量进行了分析。结果表明:LF精炼后夹杂物多为钙镁铝氧化物及硫化钙夹杂,夹杂物的尺寸较小,多为1μm~3μm,形状为方形。经VD处理后,较LF阶段夹杂物尺寸增大,夹杂物的组成多是钙镁铝尖晶石类及MnS夹杂。连铸过程中夹杂物的成分主要为MgO-Al2O3-MnS-MnO系夹杂物,夹杂物多呈圆形,其尺寸在3μm~6μm。通过大样电解发现大部分大型夹杂物都是多元复合夹杂物,颗粒粒径多在100μm以上,对钢材性能影响极大。  相似文献   

2.
102Cr17Mo钢属于高碳高铬马氏体不锈钢,钢中夹杂物及碳化物的形貌及分布对其性能有重要影响。依托于某厂La-Ce复合稀土改质的102Cr17Mo模铸坯,用光学显微镜、扫描电镜、夹杂物三维腐刻、Thermo-calc软件对其进行解析。结果表明,在102Cr17Mo铸坯中,夹杂物的等效直径集中分布在1~3μm,夹杂物数量密度集中分布在47~54个/mm2,夹杂物面积占比分布在0.025 3%~0.028 4%;夹杂物的整体尺寸较小,分布弥散化,不同部位的夹杂物数量密度、面积比例差距较小;夹杂物主要成分为氧、铝、铈、镧和其他等少量元素,夹杂物类型包括稀土氧化物Ce-La-Al-O、稀土氧硫化物Ce-La-Al-O-S,未发现单独存在的Al2O3夹杂和MnS夹杂。铸坯中碳化物形貌主要分为3类,即大颗粒状碳化物、聚集状碳化物、网状碳化物。大颗粒状碳化物尺寸约为20μm,所含主要元素为铁、铬、碳和钼,聚集状碳化物尺寸约达100μm,所含主要元素为铁、铬、钼和碳,网状碳化物尺寸约为80μm,所含主要元素为铁、铬、钼和碳。从边部到心...  相似文献   

3.
《特殊钢》2016,(4)
采用动电位极化曲线、均匀腐蚀全浸试验研究了50 kg真空感应炉冶炼的00Cr13Ni7Co5Mo4W马氏体时效不锈钢(/%:0.007C,13.23Cr,7.02 Ni,5.06Co,3.72Mo,0.96W)1100℃1 h固溶,450~510℃8 h时效后的耐蚀性能,通过金相显微镜、透射电镜、XRD分析了马氏体时效不锈钢的组织。结果表明,随时效温度升高时效过程析出R相增加,导致钢的耐点腐蚀性下降,同时由马氏体逆转变的奥氏体数量增加,可改善该钢的耐腐蚀性能。00Cr13Ni7Co5Mo4W马氏体时效不锈钢适宜的热处理工艺为1100℃1 h固溶+470℃8 h时效,其年腐蚀速率为1.259 0μm/a,点蚀击穿电位为252 mV。  相似文献   

4.
H13(4Cr5MoSiV1)钢是目前使用量最大的一种热作模具钢,钢中夹杂物和碳化物是影响性能及服役寿命的关键因素。实验在Thermo-Calc热力学软件分析基础上,采用金相显微镜、扫描电子显微镜、非水溶液电解装置等装备对某厂H13模铸坯中夹杂物、碳化物的分布规律进行解析。研究表明:夹杂物在H13模铸坯边部至中心,等效直径D≤3μm的小尺寸夹杂物逐渐减少,D≥5μm的大尺寸夹杂物逐渐增加,夹杂物的等效直径由2.82μm增大至3.86μm,密度由177个/mm2减少至47个/mm2,面积占比[0.057%,0.098%];夹杂物类型以MnS和Al2O3为主,检测结果与计算结果一致;H13碳化物从边部至心部,形态演变规律为:颗粒状、块状、片状、长条状,尺寸从几微米至100μm不等;主要为深灰色富V类MC型碳化物、亮白色富Mo类M6C型碳化物、浅灰色富Cr类M23C6型碳化物。  相似文献   

5.
Al2O3夹杂物在钢-渣界面处的运动特性及去除率   总被引:1,自引:0,他引:1  
郭洛方  李宏  王耀  李永卿 《钢铁》2012,47(4):23-27
通过理论计算和分析,研究了夹杂物颗粒在钢-渣界面处夹杂物去除层内的运动特性及去除率。结果表明:在夹杂物去除层内,Al2O3夹杂物颗粒的布朗扩散上浮临界尺寸为1.33μm,直径小于临界尺寸的夹杂物颗粒很难上浮去除;布朗碰撞的优势区域主要是直径为2.5μm以下的夹杂物颗粒之间以及直径为2.5~5μm夹杂物颗粒与0.5μm以下的微小颗粒之间的碰撞;直径为20~150μm的夹杂物颗粒在钢-渣界面去除层中9min内很容易完全上浮去除,而直径小于10μm的夹杂物颗粒去除率很低且升高缓慢,是提高钢液洁净度的主要控制对象。  相似文献   

6.
采用格子Boltzmann方法对钢液中夹杂物上浮及上浮过程中的碰撞行为进行直接数值模拟研究.结果表明,不同尺寸夹杂物颗粒上浮速度的模拟结果和理论值基本一致,表明本文所采用的数值算法能够精确有效地对钢液中固相夹杂物颗粒运动行为进行研究.当钢液中直径为80μm的夹杂物颗粒位于直径为40μm的下方并一起上浮时,直径为80μm的夹杂物颗粒会逐渐追赶上直径为40μm的夹杂物颗粒并发生碰撞形成大尺寸凝聚体,凝聚体的上浮速度显著大于二者单独上浮时的上浮速度.对于直径为40μm的夹杂物来说,形成凝聚体后的上浮速度比单独上浮时的上浮速度增加300%.实际炼钢过程中,采取必要的措施增加夹杂物颗粒之间上浮过程中的碰撞凝聚,对于提高夹杂物颗粒的上浮速度,尤其是小尺寸夹杂上浮去除速度,提高钢液的洁净度具有重要的意义.   相似文献   

7.
王耀  李宏  郭洛方 《工程科学学报》2013,35(11):1437-1442
通过理论分析和数值模拟的方法,研究了1873 K钢液中球状夹杂物颗粒运动过程中的受力情况.静止钢液和湍流场中,夹杂物颗粒所受的压力梯度力、虚拟质量力、Saffman力及Magnus力较小,可以忽略不计.静止钢液和均匀湍流场中,随着夹杂物颗粒尺寸的变大,颗粒所受Brown力逐渐衰减,当夹杂物颗粒直径大于20μm时颗粒所受Brown力基本不会对其运动造成影响,可以忽略不计.小于10μm的夹杂物颗粒布朗运动较为剧烈,单位质量夹杂物颗粒所受Basset力和Brown力较大,成为主导夹杂物颗粒运动的主要作用力;尺寸较大的夹杂物颗粒(直径D>50μm),Basset力、质量力和Stokes力共同作用影响夹杂物颗粒的运动、碰撞和去除.   相似文献   

8.
姜越  张月  祖红梅 《特殊钢》2016,37(4):52-54
采用动电位极化曲线、均匀腐蚀全浸试验研究了50 kg真空感应炉冶炼的00Cr13Ni7Co5Mo4W马氏体时效不锈钢(/%:0.007C,13.23Cr,7.02 Ni,5.06Co,3.72Mo,0.96W)1100℃1 h固溶,450510℃8 h时效后的耐蚀性能,通过金相显微镜、透射电镜、XRD分析了马氏体时效不锈钢的组织。结果表明,随时效温度升高时效过程析出R相增加,导致钢的耐点腐蚀性下降,同时由马氏体逆转变的奥氏体数量增加,可改善该钢的耐腐蚀性能。00Cr13Ni7Co5Mo4W马氏体时效不锈钢适宜的热处理工艺为1100℃1 h固溶+470℃8 h时效,其年腐蚀速率为1.259 0 μm/a,点蚀击穿电位为252 mV。  相似文献   

9.
针对以EAF-VOD-LF-模铸工艺流程生产的20Cr13不锈钢热轧棒材,利用扫描电镜和能谱仪分别对棒材横纵截面的边缘部位、1/2半径处和中心部位的夹杂物进行了检测,分析了夹杂物的尺寸、数量、分布、形貌和成分。结果表明:20Cr13不锈钢热轧棒材中的夹杂物主要有锰铝酸盐类夹杂物、硫化锰夹杂物和以硅酸盐为核心、外围为MnS或锰铝酸盐的复合夹杂物3种。从边缘到中心,夹杂物总数呈递增趋势,复合夹杂物的数量和比例也相应呈递增趋势。棒材横截面上的夹杂物大部分小于3μm,长宽比小于3;棒材纵截面上的夹杂物明显变长,中心部位夹杂物平均长为9.53μm,平均长宽比为8.22。  相似文献   

10.
通过真空感应冶炼、真空自耗重熔,制备了G102Cr18Mo不锈轴承钢锭,利用Aspex扫描电镜分析了夹杂物数量、尺寸、面积的变化规律,并采用SEM-EDS进一步观察夹杂物的元素分布。研究结果发现,不论是真空感应还是自耗重熔,夹杂物的组成变化不大,主要由硫化锰、铝酸钙、Al-Ca-Mn-(Ti)-O-S复合夹杂物3类夹杂物组成,其中Al-Ca-Mn-(Ti)-O-S夹杂物数量最多、直径(面积)最大。但是,与真空感应锭相比,经过真空自耗重熔以后,夹杂物的总数量降低55%以上,且不存在大于15 μm以上的夹杂。与真空自耗锭下部相比,其上部的夹杂物数量进一步降低,且最大夹杂物的直径不大于10 μm。大颗粒夹杂物生产的主要原因是凝固过程硫化物以钢液中残留铝酸钙夹杂物为形核核心,在其表面进一步富集、长大。因此,为了降低钢中的大颗粒夹杂,尽可能减少钢液中的铝酸钙类夹杂,以降低夹杂物形核核心的数量;同时尽量降低原料中的硫含量,以避铝酸钙和硫化锰的结合。  相似文献   

11.
The passivation behaviors of super martensitic stainless steels(SMSS)were studied by polarization curves at passive potential of-0.1Vand in various NaCl solutions,electrochemical impedance spectroscopy(EIS)and Xray photoelectron spectroscopy(XPS)analysis.Electrochemical test results showed that,in alkaline solutions,passivation region width was wider,passivation current was smaller,and polarization resistance was greater;thus,the passive film of SMSS in alkaline solutions had better passivation behaviors than that in acidic solutions.The polarization curve and EIS of samples SMSS1 and SMSS2were also used to study which sample had better passivation behaviors.All results demonstrated that passive film structure of SMSS1 sample was more stable,and capacity of passive film was enhanced.The impact of alloying elements on the passive film(SMSS)passivation capability was also discussed by XPS depth profiling,and XPS depth profiling showed that the composition of the passive film was mainly composed of Fe-oxide and Cr-oxide.So the passive film structures were mixed layers of Fe-oxide and Cr-oxide.Fe oxidation product and Cr oxidation product would help to improve the protective property of passive film,which could promote the formation of a passive film structure more stably and densely.  相似文献   

12.
Corrosion behavior of low-alloy steel was investigated in simulated cargo oil tank (COT) bottom plate service environment (10% NaCl solution, pH = 0.85). The corrosion behavior of inclusion was studied by in-situ scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). It was found that pitting corrosion was inclined to occur around the place where inclusions exist. After initial corrosion, an area of 10-20μm in diameter was formed as a cireinate cathode around the edge of inclusion. MnS inclusion dissolved in the simulated COT corrosion solution before low-alloy steel matrix, and pitting was formed at the place where MnS dissolved. TiO2 inclusion dissolved in the simulated COT corrosion solution after low alloy steel matrix, and pitting was formed at the place where steel matrix dissolved. The corrosion tended to occur at the area where the curvature radius of inclusion is smaller. The size of round TiO2 inclusions had little influence on corrosion behavior in this certain environment.  相似文献   

13.
利用300 t钢包炉工业试验研究了不同夹杂物改质工艺(包括未改质、稀土处理和钙处理)对铝镇静高强度低合金钢夹杂物特征的影响。结果表明,未改质处理炉次钢板中夹杂物为高铝含量的Al-Mg-Ca-O-S-Mn复合夹杂物,夹杂数量密度最小(仅为7.4和9.5个/mm2),但夹杂物平均尺寸大于3 μm,在轧板中检测到不小于20 μm的大尺寸夹杂数量多达0.1个/mm2。而稀土处理炉次钢板试样中夹杂物为球形La-Ce-O-S部分夹杂可能含少量Ca或Al。尽管夹杂数量密度最多达到32.5个/mm2,但夹杂平均尺寸最小(仅为2.3 μm),一个试样中未检测到不小于20 μm的夹杂,另一个试样中基本无不小于20 μm的大尺寸夹杂(仅0.01个/mm2)。钙处理炉次钢板中的夹杂物基本为球形夹杂,夹杂物成分为Ca-Al-S-O,部分夹杂可能含少量Mg或Mn,夹杂数量密度也较大,约为30个/mm2,夹杂平均尺寸为2.7 μm,稍大于稀土处理炉次,基本无尺寸不小于20 μm夹杂(0.01个/mm2)。高温共聚焦显微镜试验表明,稀土处理与钙处理的夹杂物在高温下不容易聚集成大尺寸夹杂物,而未改质炉次中的氧化铝由于与钢液界面张力大,容易聚集形成大尺寸夹杂物。  相似文献   

14.
摘要:为了研究注多元热流体吞吐热力采油过程中温度对油套管钢的影响,利用高温高压电化学釜模拟注多元热流体采油工况,分别在60、100和100~60℃循环的温度条件下,对3Cr钢进行失重腐蚀挂片试验和电化学腐蚀试验,利用高温高压电化学釜得到了3Cr钢在模拟工况下的腐蚀速率和极化曲线,并利用SEM、XRD、EDS分析了腐蚀产物膜形貌和成分。结果表明,温度由60升高至100℃时,腐蚀速率由0.552增长至1.920mm/a,在100-60℃高-低温循环时,腐蚀速率进一步升高至4.292mm/a;60和100℃时,腐蚀产物均为单层膜结构,且存在点蚀坑;在100-60℃高 低温循环时,腐蚀产物为双层膜结构,且存在直径约为4μm的腐蚀坑。温度主要影响3Cr钢腐蚀产物膜的结构和点蚀的形态,60和100℃时,点蚀坑内的聚集的Cl-离子使点蚀向纵深处发展,在100.60℃高 低温循环时,溶液中的O2促进了点蚀的横向发展,而腐蚀坑底部富集的Cr将阻碍点蚀的纵向发展。注多元热流体热力采油过程应充分考虑温度变化对3Cr钢腐蚀的影响,同时也要考虑温度变化引起3Cr钢点蚀的敏感性。  相似文献   

15.
围绕谢桥矿1161(3)工作面特定地质条件,进行了相应大采高沿空掘巷的小煤柱尺寸留设、小煤柱围岩应力场和位移场特征的数值计算。对比不同采深的巷道围岩应力场和位移场特性,给出了不同采深煤柱尺寸留设建议,得出该地质条件下采深500 m应取3~5 m宽度煤柱,采深700 m应取5~7 m宽度小煤柱,超过1 000 m的开采深度煤柱宽度应在7 m以上。  相似文献   

16.
Correlation between pitting corrosion behavior and chi( χ )phase formed after a short-term aging(5,10 and 15 min)at 850 ℃ of 2205 duplex stainless steel(DSS)was investigated using potentiodynamic polarization tests,optical microscopy,and scanning electron microscopy equipped with energy-dispersive spectrum system.Results showed that after aging for 5min,the χ phase initially precipitated at ferrite grain boundaries,developed and then became linked with prolonging aging time.The χ phase was rich in Cr and Mo,resulting in formation of depleted zones nearby.The χ phase could reduce corrosion resistance of DSS and slightly influence its stability,but the specimens still displayed the capacity for repassivation.Some lines of evidence showed that stable pitting corrosion initiated at the boundaries of precipitates.The χ phase was selectively corroded during the first stage of corrosion and then the depleted zones nearby were attacked.In addition,the grain size and volume of precipitates also affected pit nucleation and progress,and suitable size and distribution of χ phase could aggravate pit initiation at precipitate boundaries.The χ phase with considerably low volume fraction and small size was not sensitive position for pit initiation.  相似文献   

17.
摘要:以U75V重轨钢为实验钢种,分别研究了热处理、稀土处理及二者共同处理对钢中MnS夹杂物的影响。结果表明:原始U75V钢中主要有3类夹杂物,即纯MnS、Al2O3-SiO2-CaO-MnO复合夹杂和MnS半包裹的Al2O3-SiO2-CaO复合夹杂,其平均长宽比为3.3,平均尺寸为4.5μm。经加热至1200℃保温2h再水冷后,钢中夹杂物的种类和成分没发生变化,但是球化作用显著,平均长宽比降为1.3,降低了约61%,平均尺寸也有所减少,减少了约25%;添加微量稀土Ce后,夹杂物种类和成分均复杂化,除了纯MnS以外,还发现了另外3种不同形态的含Ce夹杂物。与原始U75V相比,添加Ce后,夹杂物球化作用与退火处理效果相当,平均长宽比降为1.4,降低了约58%,但是对平均尺寸减小作用甚微,只减小了9%;进一步地,对添加Ce后的实验钢进行1200℃保温2h再水冷,夹杂物球化率没有变化,即平均长宽比仍为1.4。但是夹杂物平均尺寸进一步减小,与原始U75V钢相比,减小了1.4μm(约31%)。与单一添加稀土Ce的钢相比,夹杂物平均尺寸也减小了1μm(约24%)。仅就夹杂物球化率即降低长宽比来说,退火和添加稀土2种处理方式的效果相同,考虑其节能环保因素,后者更具明显优势。另一方面,从夹杂物细化方面来说,单一添加稀土Ce在本实验条件下效果不明显,要想使夹杂物尺寸更小,需要添加Ce结合热处理对U75V钢进行综合处理。  相似文献   

18.
Based on corrosion kinetics and fracture mechanics, it has been possible to determine quantitatively the corrosion fatigue life for three different types of corrosion behavior. Under general, active corrosion, corrosion fatigue life is controlled by the corrosion rate and the applied alternating stress range. If pitting corrosion occurs, corrosion fatigue life depends on the incubation time for nucleating a pit, the pit growth kinetics, and a critical pit depth, which is a function of the applied stress range. It has been assumed that under passive corrosion conditions, the passive layer has to be penetrated by slip steps, to form corrosion fatigue cracks. The corrosion fatigue crack initiation in this case is controlled by the repassivation kinetics of the material and also by a critical notch depth, depending on the applied stress range. It has been found that a critical current density exists, below which no corrosion fatigue cracks can initiate. Comparison of the theoretically calculated life times with experimental results showed a quite good correlation. M. MüLLER, formerly Research Engineer with Brown Boveri Research Center, Baden, Switzerland.  相似文献   

19.
摘要:添加Cr元素设计具有形变诱导孪生效应(twinning induced plasticity, TWIP)的高强不锈钢,采用亚点阵晶格模型运用Matlab计算得到设计合金层错能(stacking fault energy,SFE)为37.65mJ/m2。通过(900~1200)℃×1h热处理发现晶粒尺寸、退火孪晶数量、初始晶粒尺寸和孪晶片层厚度均随着固溶温度的升高而增加;观察拉伸断口剖面发现在大晶粒中形变孪晶数量多相互交错程度高,形变孪晶不断切割奥氏体晶粒使得材料发生大的无颈缩延伸,应变硬化平台(θ=0)出现较早,随着应变增大,高固溶温度下的混晶组织使得该平台呈交替出现。固溶温度从900℃升高至1200℃,原始奥氏体晶粒尺寸由25.1μm增大至64.91μm时,冲击吸收功由231J减少至202J,断裂方式为韧性断裂,强塑积由47GPa·%增至69GPa·%。通过动电位极化曲线分析实验钢在3.5%(质量分数)NaCl中的具有相对较低的腐蚀电位(Ecorr=-302mV)和腐蚀电流密度(Icorr=1.03×10-6A/cm2),观察分析夹杂物容易成为点蚀诱发源,腐蚀过后观察到其表面产生大量的腐蚀坑洞。  相似文献   

20.
Dynamic Response of Footings Resting on a Sand Layer of Finite Thickness   总被引:1,自引:0,他引:1  
Dynamic response of foundations depends on several factors, namely, size and shape of the foundations, depth of embedment, soil profile and properties, frequency of loading, and mode of vibration. An attempt was made in this Technical Note to investigate the dynamic behavior of foundations resting on a sand layer underlain by a rigid layer. Model block vibration tests were carried out in a pit of size 2.0?m×2.0?m×1.9?m using a concrete footing of size 0.4?m×0.4?m×0.1?m and a vertically acting rotating-mass type mechanical oscillator. Using locally available river sand, a sand layer of six different thicknesses was prepared, and, for each thickness, tests were carried out for two different static weights and three different dynamic loadings. It was observed that the resonant frequency decreases with an increase in layer thickness and it nearly equals that of the half-space when the thickness of the layer is more than three times the width of the footing. It was also observed that the radiation damping of the sand layer was affected by the presence of a rigid layer at bottom. Inclusion of rigid layer causes a 9.8% reduction with respect to homogeneous sand condition even for a sand layer of thickness four times the width of the footing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号