首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Maximal tetanic tension was elicited at 200, 150, and 150 Hz in control tibialis anterior muscles and at 150, 100, and 100 Hz in 14-day regenerating muscles of young (3 months), adult (18 months), and old (31 months) Fischer 344/Brown Norway F1 rats, respectively. In contrast to young rats, increasing stimulation frequency from 50 to 150 Hz did not elicit significantly greater tetanic tension in control or regenerating muscles of old rats. At higher stimulation frequencies, tetanic fade was prevalent in control and regenerating muscles of adult (250-300 Hz) and old rats (200-300 Hz), but was only present at 14 days of recovery in regenerating muscles of young rats (300 Hz). The decreased efficacy of rehabilitative and physical medicine procedures in adult and elderly patients who have suffered skeletal muscle injury could be explained, in part, by the postulate that tetanic fade is indicative of inadequate synaptic transmission.  相似文献   

2.
The clinical success of limb replantation and tissue transfer is partly dependent on the duration of ischemia experienced by the amputated part. This study focused primarily on the damage that occurs during this ischemic period. An experimental system was implemented that allowed the observation of contractile function in totally isolated skeletal muscle after ischemia. Contractile function was selected as an indicator of ischemic damage because normal function is the ultimate goal of replantation. All experiments were performed on the rat extensor digitorum longus. The muscles were subjected to ischemic periods of 1.5, 3.0, and 5.0 hours and were stored in either a hypothermic (4 degrees C) or a room-temperature (23 degrees C) environment during the ischemic interval. After the ischemic period, all muscles were transferred to a tissue bath and were subjected to contractility testing, followed by fatigue testing. In both groups, muscle function decreased as the ischemic interval was increased. A significant difference in function between the normal control and the muscles of both ischemic groups implied that ischemic injury had occurred in the hypothermic and room-temperature muscles, even with the relatively short 1.5-hour ischemic interval. After each ischemic interval however, the hypothermic muscles produced significantly greater contractile force than the room-temperature muscles in both the contractility and the fatigue tests. After 1.5 hours of ischemia, the contractile force in the hypothermic group was about three times as great as that observed in the room-temperature group. These results indicated that muscle function after a period of totally isolated ischemia is protected by hypothermic preservation. They also support the advisability of storage of amputated parts and free muscle flaps in hypothermic environments before replantation even after relatively brief intervals of ischemia.  相似文献   

3.
Ischemic preconditioning of the myocardium with repeated brief periods of ischemia and reperfusion prior to prolonged ischemia significantly reduces subsequent myocardial infarction. Following ischemic preconditioning, two "windows of opportunity" (early and late) exist, during which time prolonged ischemia can occur with reduced infarction size. The early window occurs at approximately 4 hours and the late window at 24 hours following ischemic preconditioning of the myocardium. We investigated if ischemic preconditioning of skeletal muscle prior to flap creation improved subsequent flap survival and perfusion immediately or 24 hours following ischemic preconditioning. Currently, no data exist on the utilization of ischemic preconditioning in this fashion. The animal model used was the latissimus dorsi muscle of adult male Sprague-Dawley rats. Animals were assigned to three groups, and the right or left latissimus dorsi muscle was chosen randomly in each animal. Group 1 (n = 12) was the control group, in which the entire latissimus dorsi muscle was elevated acutely without ischemic preconditioning. Group 2 (n = 8) investigated the effects of ischemic preconditioning in the early window. In this group, the latissimus dorsi muscle was elevated immediately following preconditioning. Group 3 (n = 8) investigated the effects of ischemic preconditioning in the late window, with elevation of the latissimus dorsi muscle 24 hours following ischemic preconditioning. The preconditioning regimen used in groups 2 and 3 was two 30-minute episodes of normothermic global ischemia with intervening 10-minute episodes of reperfusion. Latissimus dorsi muscle ischemia was created by occlusion of the thoracodorsal artery and vein and the intercostal perforators, after isolation of the muscle on these vessels. Muscle perfusion was assessed by a laser-Doppler perfusion imager. One week after flap elevation, muscle necrosis was quantified in all groups by means of computer-assisted digital planimetry. Our results show that ischemic preconditioning resulted in a significant reduction (p < 0.05) in muscle-flap necrosis immediately and 24 hours following ischemic preconditioning. Perfusion changes after flap elevation were similar among the three groups. Ischemic preconditioning of skeletal muscle prior to flap creation significantly reduces subsequent muscle-flap necrosis caused by the ischemia of flap creation immediately and 24 hours following ischemic preconditioning. Further elaboration of the mechanisms of ischemic preconditioning may allow pharmacologic preconditioning to be used in the augmentation of skeletal muscle-flap survival in the clinical setting.  相似文献   

4.
Prolonged tissue ischemia and subsequent reperfusion result in significant tissue injury due to the ischemic-reperfusion syndrome. Although skeletal muscle has significant tolerance to ischemic-reperfusion injury (IRI), compared to other organ systems, IRI of skeletal muscle does occur when there is a prolonged ischemic period. In many reconstructive surgical procedures involving microsurgery and prolonged tissue ischemia time, IRI-induced skeletal-muscle injury is a serious clinical concern. Specifically, there are significant vascular complications (venous thrombosis and arteriolar no-reflow) and loss of transplanted muscle function on reperfusion with prolonged ischemia. Ischemic preconditioning (IPC) or adenosine (ADO) pretreatment applied prior to the ischemic period are known to protect against IRI in cardiac muscle. Recent data from basic science research suggest that IPC or ADO pretreatment may be employed to protect skeletal muscle against IRI. This review summarizes the basic mechanisms and potential clinical relevance of ischemia- and reperfusion-induced skeletal muscle injury and describes how skeletal muscle can be protected against IRI with IPC or ADO pretreatment.  相似文献   

5.
The effects of a nitric oxide (NO) donor on microcirculation and contractile function of reperfused skeletal muscle were studied. Rat cremaster muscles underwent 5 hours of ischemia and 90 minutes of reperfusion and were divided into two groups systemically infused with S-nitroso-N-acetylcysteine (SNAC, 100 nmol/min) and phosphate-buffered saline (PBS), respectively. The results showed that the vessels in the SNAC group had more rapid and complete recovery than that in controls. A significant difference was found from 10 to 40 minutes and at 90 minutes in 10-20-microm arterioles, from 10 to 90 minutes in 20-40-microm arterioles, and at 10 and 90 minutes in 40-70-microm arteries. When compared to controls, SNAC-treated muscles showed larger fluorescein filling areas at 15, 30, 60, and 90 minutes and greater isometric tetanic contractile forces in response to stimulation frequencies of 40, 70, 100, and 120 Hz. The data indicate that supplementation of exogenous NO could effectively improve microcirculation and contractile function of skeletal muscle during early reperfusion.  相似文献   

6.
Ischemic preconditioning enhances donor lung preservation in the rat   总被引:1,自引:0,他引:1  
BACKGROUND: Ischemic preconditioning achieved by brief periods of ischemia and reperfusion before a prolonged period of ischemia can significantly reduce the extent of cardiac damage in many mammalian species and human beings. In this study we used a rat model of single lung transplantation to show that ischemic preconditioning also occurs in the lung. METHODS: Rats randomly selected for ischemic preconditioning had their left main bronchus and pulmonary artery occluded for 5 minutes, followed by 10 minutes of reperfusion and ventilation. Lungs of control rats were ventilated for 15 minutes. The lungs were perfused with University of Wisconsin solution, then heart and lungs were excised en bloc and stored in University of Wisconsin solution at 0 degree C for 6 or 12 hours. After left pneumonectomy, the left lung of the donor was then implanted into the recipient via left thoracotomy. After 1 hour of ventilation and reperfusion, a right pneumonectomy was performed making the animal completely dependent on the transplanted lung. Samples of arterial blood from the left ventricle were then taken for arterial oxygen tension and arterial carbon dioxide tension determination. Water contents of the donor lungs were measured before and after reperfusion. Thiobarbituric acid reactive substances were measured in the right donor lung after storage. RESULTS: Lungs transplanted after 12 hours of storage had profoundly impaired gas exchange (arterial oxygen tension = 34 +/- 5; arterial carbon dioxide tension = 69 +/- 7 mm Hg) compared with the normal levels in the 6-hour storage group (arterial oxygen tension = 308 +/- 22; arterial carbon dioxide tension = 17 +/- 1 mm Hg). Ischemic preconditioning significantly improved gas exchange in the 12-hour storage group (arterial oxygen tension = 83 +/- 11; arterial carbon dioxide tension = 40 +/- 4 mm Hg). Ischemic preconditioning also significantly decreased thiobarbituric acid reactive substances formation at both 6- and 12-hour storage. CONCLUSIONS: These results show that the phenomenon of ischemic preconditioning occurs in the lung and that it may reduce injury to the donor lung during prolonged cold ischemic storage.  相似文献   

7.
The present study was conducted to elucidate the effects of tirilazad mesylate (U-74006F), a potent inhibitor of lipid peroxidation, on vessel diameter, capillary perfusion, and contractile function of rat cremaster muscle during a 90-minute reperfusion period that followed 4 hours of warm ischemia. Two groups of 32 animals were treated with either 3 mg/kg U-74006F or the vehicle (citrate buffer) alone 30 minutes before ischemia, 90 minutes after ischemia, and immediately before reperfusion. With use of intravital videomicroscopy, the internal luminal diameters of preselected vessels were measured prior to ischemia and during reperfusion. The area that filled with fluorescein was determined at 15-minute intervals for as long as 90 minutes of reperfusion, and contractile function was examined in vitro in an organ bath at that point. In the U-74006F group, after 90 minutes of reperfusion the vessel diameters returned completely to baseline and the diameters of all three categories of vessels at every time point from 10 to 90 minutes of reperfusion had significantly more rapid recovery than the controls. Although some evidence of more rapid fluorescence was noted in the U-74006F group, the two groups did not differ significantly at any time period of reperfusion. In response to tetanic stimulation, the muscles treated with U-74006F had a significantly greater contractile force at all stimulation frequencies than the control muscles. Our findings indicate that pretreatment with U-74006F can effectively decrease the rise of vascular resistance and preserve the contractile function of skeletal muscle during early reperfusion, thereby attenuating ischemia-reperfusion injury.  相似文献   

8.
9.
Video microscopy of red cell flow in capillaries at the surface of skeletal muscle provided the opportunity to quantitate ischemia-reperfusion (I-R) induced microcirculatory changes, in vivo. Extensor Digitorum Longus (EDL) muscles of 22 male Wistar rats (300-400 g), anesthetized with sodium pentobarbital (Somnotol, 65 mg kg,-1 IP), were used to measure the number of perfused capillaries (CDper: mm-1) crossing lines drawn perpendicular to the muscle axis, and red blood cell velocity (VRBC: mm/s) within individual capillaries from controls (n = 6), and after 2 hr (n = 4), 3 hr (n = 4), and 4 hr (n = 5) of no-flow ischemia with the muscle temperature maintained at its normal value of 32 degrees C. Ischemia was induced by tightening a tourniquet placed around the limb above the EDL muscle. Measurements were made after 30, 60, and 90 min of reperfusion. To test the usefulness of this skeletal muscle model for evaluating proposed interventions in I-R, the effect of hypothermia (24 degrees C) on the microcirculation following 4 hr ischemia (n = 3) was measured. Edema formation was estimated from the wet/dry weight ratio of the ischemic and contralateral control EDL muscles. Capillary perfusion at the surface of the control muscles was remarkably stable over the 5 hr period studied, while significant changes occurred following the ischemic periods. Significantly lower CDper was measured 30 min following all periods of normothermic ischemia. However, unlike the 2 and 4 hr ischemic periods 3 hr normothermic ischemia resulted in a progressive decline in CDper throughout the reperfusion period. VRBC showed evidence of a hyperemic response following 2 hr normothermic ischemia (control: 0.12 mm/s +/- 0.19 compared to 0.26 mm/s +/- 0.03 following 90 min reperfusion; mean +/- sem). However, no such hyperemia was measured following either 3 or 4 hr normothermic ischemia (i.e., 3 hr control: 0.24 mm/s +/- 0.01 compared to 0.07 mm s +/- 0.003 following 90 min reperfusion). In fact, VRBC was essentially zero 90 min following 4 hr normothermic ischemia (0.01 mm/s +/- 0.01). However, when the muscle was allowed to cool to 24 degrees C during 4 hr ischemia no significant change in either VRBC or CDper was measured compared to pre-ischemic controls. Evidence of edema was found after 3 and 4 hr normothermic ischemia. This study establishes a skeletal muscle model of I-R, which may be useful in testing hypotheses regarding mechanisms of I-R injury, and effectiveness of proposed treatments of I-R.  相似文献   

10.
The effect of vasoactive intestinal peptide (VIP) on the nerve-stimulated contraction, tissue oxygenation, lipid peroxidation and antioxidant enzymes activities-superoxide dismutase and catalase was investigated in the rat gastrocnemius muscle exposed to 4 h ischemia-4hr reperfusion. Ischemia caused significant decrease in muscle contractile force, oxygenation and superoxide dismutase enzyme activity. Reperfusion of ischemic muscle increased the muscle contractile force and restored the tissue oxygenation to the baseline level. Superoxide dismutase and catalase activities of reperfused muscle increased significantly. However neither ischemia nor reperfusion affected gastrocnemius muscle malondialdehide (MDA) levels. VIP administration at the onset of reperfusion significantly increased skeletal muscle contractile force and tissue oxygenation even higher than baseline and reperfusion values. VIP also normalized the increased superoxide dismutase and catalase activities of reperfused skeletal muscle. In conclusion, VIP, acting as a powerful antioxidant and preserving contractile machinery seems to be a promising endogenous peptide that can salvage the skeletal muscle from severe ischemia-reperfusion injury.  相似文献   

11.
The isometric twitch and tetanic contractions of three hindlimb muscles (soleus, plantaris, extensor digitorum longus) were recorded in situ in groups of mdx and C57BL/10 control mice at young, adult and old ages (3, 4, 6, 8, 13, 26, 39 and 52 weeks). Based on a two-way analysis of variance (age/phenotype) the mdx phenotype did not modify the absolute tension but was associated with a significant decrease in the tetanic tension normalized to muscle weight in all the muscles which became heavier. These results suggest that the contractile material in mdx is not so powerful as in controls. Moreover, significantly faster time to peak and half-relaxation time were observed in mdx soleus and plantaris. Comparison between these contraction characteristics and those of other experimental models suggests that the high percentage of regenerated fibres in mdx muscles could play a role in modifying contractile properties.  相似文献   

12.
BACKGROUND: Acceleration of ischemic contracture is conventionally accepted as a predictor of poor postischemic function. Hence, protective interventions such as cardioplegia delay ischemic contracture and improve postischemic contractile recovery. We compared the effect of ischemic preconditioning and cardioplegia (alone and in combination) on ischemic contracture and postischemic contractile recovery. METHODS AND RESULTS: Isolated rat hearts were aerobically perfused with blood for 20 minutes before being subjected to zero-flow normothermic global ischemia for 35 minutes and reperfusion for 40 minutes. Hearts were perfused at a constant pressure for 60 mm Hg and were paced at 360 beats per minute. Left ventricular developed pressure and ischemic contracture were assessed with an intraventricular balloon. Four groups (n=8 hearts per group) were studied: control hearts with 35 minutes of unprotected ischemia, hearts preconditioned with one cycle of 3 minutes of ischemia plus 3 minutes of reperfusion before 35 minutes of ischemia, hearts subjected to cardioplegia with St Thomas' solution infused for 1 minute before 35 minutes of ischemia, and hearts subjected to preconditioning plus cardioplegia before 35 minutes of ischemia. After 40 minutes of reperfusion, each intervention produced a similar improvement in postischemic left ventricular development pressure (expressed as a percentage of its preischemic value: preconditioning, 44 +/- 2%; cardioplegia, 53 +/- 3%; preconditioning plus cardioplegia, 54 +/- 4% and control, 26 +/- 6%, P<.05). However, preconditioning accelerated whereas cardioplegia delayed ischemic contracture; preconditioning plus cardioplegia gave an intermediate result. Thus, times to 75% contracture were as follows: control, 14.3 +/- 0.4 minutes; preconditioning, 6.2 +/- 0.3 minutes; cardioplegia 23.9 +/- 0.8 minutes; and preconditioning plus cardioplegia 15.4 +/- 2.4 minutes (P<.05 preconditioning and cardioplegia versus control). In additional experiments, using blood- and crystalloid-perfused hearts, we describe the relationship between the number of preconditioning cycles and ischemic contracture. CONCLUSIONS: Although preconditioning accelerates, cardioplegia delays, and preconditioning plus cardioplegia has little effect on ischemic contracture, each affords similar protection of postischemic contractile function. These results question the utility of ischemic contracture as a predictor of the protective efficacy of anti-ischemic interventions. They also suggest that preconditioning and cardioplegia may act through very different mechanisms.  相似文献   

13.
1. The responses elicited in individual tendon organs by the contraction of single motor units were studied in peroneus longus, peroneus brevis, tibialis anterior and soleus muscles. 2. No simple relation was found between the discharge frequency of a tendon organ and the tension produced in the muscle tendon by the contraction of individual motor units. 3. The sensitivity of a given tendon organ to contractile tension was not the same for each of the motor units which elicited its discharge. There was no correlation between the sensitivity of the receptor and the strength of the motor units. 4. Upon repetitive stimulation of a tendon-organ-activating motor unit at increasing rates, the frequency of the receptor sustained discharge reached a maximal value for rates of stimulation eliciting submaximal tetanic tension. Higher rates only produced an increase in the dynamic component of the tendon organ response. 5. These observations show that the contractile tension sensed by a tendon organ is not a simple fraction of the tension which appears at the muscle tendon. They might be accounted for as consequences of the fine structure of tendon organs and of variations in the number of muscle fibres contributed by different motor units to the bundle inserted on each receptor. The location of most tendon organs at musculo-aponeurotic junctions rather than in the tendon proper, could also be responsible for some of the observed discrepancies.  相似文献   

14.
1. Extensor digitorum longus muscles of C57 BL/10 and mdx mice were overloaded by removing the synergist tibialis anterior muscle of 9-12-day-old animals. The effect of this operation on the weight, contractile properties and force of the extensor digitorum longus muscle was examined at two different ages, i.e. at 2-3 months (young group) and at 5-8 months (old group). The changes with age in both the control and overloaded muscles of normal and mdx mice are also described. The values obtained from the overloaded muscles were always compared with those for the control, unoperated extensor digitorum longus. 2. In the normal strain of mice the weight of the overloaded extensor digitorum longus muscle in the younger group was increased and it remained higher in the older animals. In the mdx mice the overloaded extensor digitorum longus muscles weighed more in the younger animals but not in the older group of mice. 3. The twitch and tetanic tensions of the overloaded muscles were slightly, but not significantly, increased in the younger group of mdx mice, whereas in the older animals there was a significant decrease in both twitch and tetanic tensions. 4. Thus the overloaded muscles from mdx mice progressively deteriorated with age. In both strains of mice the overloaded muscles become less fatigable with time.  相似文献   

15.
Increases in cytosolic free calcium concentration ([Ca2+]I) may play an important role in myocardial ischemic injury. An early effect of the rise in [Ca2+]I may be impaired postischemic contractile function if the ischemic myocardium is reperfused during the reversible phase of ischemic injury; furthermore, if the rise in [Ca2+]I is prolonged, a cascade of events may be initiated which ultimately results in lethal injury. With the development of methods for measuring [Ca2+]I, it has become possible to evaluate directly the role of increased [Ca2+]I in myocardial ischemic injury. Although it has been possible to show that inhibition of the transport processes which contribute to the early rise in [Ca2+]I attenuates stunning and the rise in [Ca2+]I concurrently, if increased [Ca2+]I plays an important role in ischemic injury, then it should be possible to show that interventions which alter the timecourse of ischemic injury also alter the timecourse of the rise in [Ca2+]I in a parallel manner. Recently, considerable effort has been expended to investigate the mechanisms underlying the preconditioning phenomenon, whereby repetitive brief periods of ischemia prior to a sustained period of ischemia protects the myocardium from injury during the sustained period of ischemia, and this has stimulated additional work to understand the possible involvement of adenosine as a mediator of preconditioning as well as to understand the protective effects of adenosine. Measurements of [Ca2+]I using 19F NMR of 5FBAPTA-loaded hearts have shown that preconditioning attenuates the rise in [Ca2+]I during 30 min of ischemia and reduces stunning during reflow. Adenosine pretreatment mimics the effects of preconditioning on the rise in [Ca2+]I and on stunning, but adenosine receptor antagonists do not eliminate the protective effects of preconditioning, although some adenosine antagonists also block hexose transport and under these conditions, the ability of preconditioning to attenuate the rise in [Ca2+]I is abolished and there is a corresponding loss of the protective effect of preconditioning on stunning. Although it has been suggested that the beneficial effect of preconditioning on infarct size can be eliminated by pretreatment with glibenclamide, in the isolated rat heart glibenclamide does not affect the attenuation of the rise in [Ca2+]I induced by preconditioning and does not affect stunning. All of these studies show a consistent relationship between the magnitude of the rise in [Ca2+]I during ischemia and the degree of stunning during reperfusion. The data suggest that increased [Ca2+]I plays a very important role in myocardial ischemic injury.  相似文献   

16.
BACKGROUND: We have previously demonstrated that ischemic preconditioning (PC) does not protect when oxygen deprivation is accompanied by a high level of perfusion (hypoxia). Since clinical ischemia can vary from mild to severe, we wished to determine whether PC could protect against injury arising from low-flow ischemia. METHODS AND RESULTS: Functional recovery after 30 minutes of reperfusion was assessed in isolated, blood-perfused rat hearts (n=6 per group) subjected to (A) 30 minutes of zero-flow ischemia, (B) 30 minutes of zero-flow ischemia preceded by 3xPC (PC=5 minutes of ischemia+5 minutes of reperfusion), (C) 90 minutes of low-flow ischemia at 10% of baseline coronary flow (0.31+/-0.02 mL/min per gram wet wt), (D) 90 minutes of low-flow ischemia at 10% of baseline coronary flow (0.29+/-0.02 mL/min per gram wet wt) preceded by 3xPC. PC significantly protected against injury resulting from zero-flow ischemia (developed pressure recovered to 67+/-6% versus 31+/-12% in B and A, respectively; P<.05) but not resulting from low-flow ischemia (recovery of developed pressure was 40+/-8% versus 37+/-7% in C and D, respectively). Protein kinase C (PKC) is widely considered to be involved in the mechanism of PC such that prior activation and translocation of PKC by the PC protocol allows phosphorylation of the end-effector protein early during the subsequent ischemic insult, before loss of adenosine triphosphate occurs. However, because adenosine triphosphate content falls slowly during low-flow ischemia, PKC may be activated and translocated early enough to be active during this insult. If so, inhibition of PKC should decrease functional recovery in the control group. However, functional recovery in control groups was not decreased in the presence of the PKC inhibitor polymyxin B (50+/-6%), suggesting that if activation of PKC occurred during low-flow ischemia, it was not protective. CONCLUSIONS: PC does not protect against contractile dysfunction in the rat when a low level (10% of baseline flow) of ischemic perfusion remains during the prolonged insult.  相似文献   

17.
BACKGROUND: Cardiomyoplasty is a new surgical alternative therapy for CHF. Although conditioning of muscle for cardiomyoplasty has a positive effect on fatigue resistance it also produces negative effects. In this study we assessed the effect of salbutamol, a beta2-agonist, on both the positive and the negative effects of conditioning. METHODS: In a control group of six animals one latissimus dorsi was subject to chronic, 1 Hz, low-frequency stimulation (CLFS) while the other served as a control. The experimental group of seven dogs received a continuous SC infusion of salbutamol and one latissimus dorsi was subjected to CLFS. The other muscle demonstrated the effects of salbutamol per se. After 42 days the animals were anesthetized and fatigue resistance, muscle mass, and mechanical properties of the muscles were evaluated. RESULTS: Salbutamol increased muscle mass, tetanic tension, and rate of rise and fall of tetanic tension. It diminished fatigue resistance and had no effect on shortening velocity. Chronic stimulation decreased muscle mass, tetanic tension, rate of rise and fall of tetanic tension, and muscle shortening velocity in both groups of dogs. Salbutamol diminished the declines in muscle mass, rate of tension development, and rate of muscle shortening due to CLFS, but did not change the effects of CLFS on tetanic tension and the rate of fall of tetanic tension. Salbutamol did not alter the increase in fatigue resistance induced by CLFS. CONCLUSIONS: The favorable effect of CLFS on fatigue resistance was unaffected by salbutamol. The unfavorable effects of CLFS on loss of muscle mass, rate of tension development, and decline in shortening velocity were partially blocked by salbutamol, improving the ability of the latissimus dorsi to augment cardiac systole.  相似文献   

18.
BACKGROUND: Patients with heart failure show a very high incidence of arrhythmias and sudden death that is often preceded by ischemia; however, data on electrophysiological changes during ischemia in failing myocardium are sparse. We studied electrical uncoupling during ischemia in normal and failing myocardium. METHODS AND RESULTS: Tissue resistance, intracellular Ca2+ concentration (Indo-1 fluorescence ratio), and mechanical activity were simultaneously determined in arterially perfused right ventricular papillary muscles from 11 normal and 15 failing rabbits. Heart failure was induced by combined volume and pressure overload. Before sustained ischemia, muscles were subjected to control perfusion (non-PC) or ischemic preconditioning (PC). The onset of uncoupling during ischemia was equal in non-PC normal (13.6+/-0.9 minutes of ischemia) and non-PC failing hearts (13.3+/-0.7 minutes of ischemia). PC postponed uncoupling in normal hearts by 10 minutes. In failing hearts, however, PC caused a large variability in the onset of uncoupling during ischemia (mean, 12.2+/-2.1; range, 5 to 22 minutes of ischemia). The duration of uncoupling process was prolonged in failing hearts (12.9+/-0.9 minutes) compared with normal hearts (7.8+/-0.4 minutes). The degree of heart failure and relative heart weight of the failing hearts significantly correlated with the earlier uncoupling after PC and the duration of uncoupling. In every experiment, the start of Ca2+ rise and contracture preceded uncoupling during ischemia. CONCLUSIONS: The duration of the process of ischemia-induced electrical uncoupling in failing hearts is prolonged compared with that in normal hearts. Ischemic PC has detrimental effects in severely failing papillary muscles because it advances the moment of irreversible ischemic damage.  相似文献   

19.
PURPOSE: The objectives of this study were to examine whether preconditioning can decrease ischemic damage to the retina, by electroretinographic assessment of visual function and by histologic examination of retinal structure; to investigate the time course of the effectiveness of preconditioning; and to determine whether protein synthesis is involved. METHODS: Retinal ischemia was produced for 60 minutes in anesthetized Sprague-Dawley rats. Recovery after ischemia was measured by electroretinography for a maximum period of 7 days. Retinal sections that were sliced 1 micron thick were examined 7 days after ischemia. Retinal ischemia for 5 minutes constituted the preconditioning stimulus. To assess the time course of preconditioning, animals first underwent preconditioning and then 60 minutes of ischemia 1, 24, 72, or 168 hours later; or they underwent a 5-minute sham experiment and 60 minutes of ischemia 24 hours later. An additional group of rats received 0.4 mg/kg cycloheximide, the protein synthesis inhibitor, intraperitoneally before preconditioning and underwent 60 minutes of ischemia 24 hours later. RESULTS: In contrast to the nonpreconditioned rats, preconditioned rats had complete recovery of the a- and b-waves compared with preischemic baseline amplitudes, and ischemia-induced histologic damage was completely prevented when preconditioning was performed 24 or 72 hours (but not 168 hours) before ischemia. Separation of preconditioning and 60 minutes of ischemia by 1 hour caused an even greater impairment of functional retinal recovery compared with that seen in sham-preconditioned rats. Severe histologic damage was also noted. Block of protein synthesis by cycloheximide completely attenuated the protective effect of preconditioning. CONCLUSIONS: Preconditioning induces profound retinal tolerance to ischemia in vivo. The absence of a protective effect of preconditioning when there was a 1-hour or a 168-hour separation between the preconditioning stimulus and ischemia and the inhibition of preconditioning by cycloheximide support the hypothesis that a transient change in protein expression is necessary to provide this protection.  相似文献   

20.
Ischemic preconditioning (IP), using one or more brief periods of ischemia, each followed by a short reperfusion phase, improves tolerance of subsequent sustained ischemia in different organs. The aim of this experimental study was to evaluate the effects of IP on postischemic function in skeletal muscle. Right hindlimbs of anesthetized rats were pretreated with three cycles each of 10 min of ischemia and 10 min of reperfusion (n = 12). Non-preconditioned animals (n = 12) served as controls. These hindlimbs were then subjected to 3 h of ischemia and 2 h of reperfusion. IP resulted in a significant increase in postischemic skeletal muscle force (240 +/- 47 mN vs 409 +/- 63 mN), force-time integral (1081 +/- 242 mN*s vs 2546 +/- 481 mN*s) and endurance (29.6 +/- 3.4 s vs 48.0 +/- 5.0 s). These data support the potential of IP to reduce postischemic skeletal muscle damage in surgery of the extremities using tourniquet ischemia. The concept deserves clinical evaluation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号