首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 484 毫秒
1.
研究了V-Ti微合金非调质钢38MnVS(/%:0.42C、0.76Si、1.33Mn、0.011S、0.013P、0.10V、0.02Ti)的奥氏体动态再结晶过程。通过Gleeble-3800热模拟试验机,研究了变形温度(950~1150℃)和变形速率(0.1~10s-1)对38MnVS钢奥氏体动态再结晶过程的影响,并建立了Zener-Hollomon参数为变量的方程、动态再结晶尺寸模型和动态再结晶状态图。结果表明,变形温度越高,变形速率越低,发生动态再结晶的临界驱动力越小,动态再结晶越易进行;微合金非调质钢38MnVS动态再结晶激活能为Qd=275.453 kJ/mol。  相似文献   

2.
实验用非调质钢48MnVS(/%:0.48C,0.60Si,1.50Mn,0.35Cr,0.14V,0.05S,0.020Al,0.0150N)由100t EAF冶炼,连铸成280 mm×360 mm坯,轧成Φ100 mm棒材。通过Gleeble-3800热模拟实验机研究了变形温度950~1150℃,变形速率0.1~10 s-1,变形量60%的单道次压缩钒微合金非调质钢48MnVS的奥氏体再结晶过程得出真应力-应变曲线,计算得出实验钢的动态再结晶晶粒尺寸模型和动态再结晶状态图。结果表明,钒微合金化非调质钢48MnVS变形温度越高,变形速率越低,则发生动态再结晶的形变储能越小,越容易发生动态再结晶。实验钢48MnVS的动态再结晶激活能为Qd=343.202 kJ/mol。  相似文献   

3.
采用Gleeble-1500热模拟机测得40Mn2V微合金化非调质钢(%:0.38C、1.48Mn、0.12V)Φ90 mm管坯在800~1 000℃、变形速率0.5~2.0 s-1时的真应力-应变曲线,并研究了该钢的动态再结晶行为。结果表明,40Mn2V钢的动态再结晶激活能Qd为382.21 kJ/mol,通过动态再结晶图得出,因子Z>2.621×1015时,40Mn2V钢动态再结晶难以完成,当因子Z>2.014×1017时,该钢动态再结晶难以发生。  相似文献   

4.
 在Gleeble-3800热模拟试验机上进行热变形试验,研究不同钒质量分数的直接切削用非调质钢在变形温度为950~1 150 ℃,应变速率为0.1~10 s-1,变形量为60%的单道次压缩的奥氏体再结晶过程,计算得出V1钢的动态再结晶激活能[Qd]比V2钢提高了79.617 kJ/mol,增加钒质量分数具有抑制奥氏体动态再结晶发生的作用。根据试验模拟结果并结合实际生产情况,确定V1钢和V2钢最佳的热加工工艺参数。  相似文献   

5.
借助Gleeble-3800热模拟实验机研究了真空感应炉熔炼,并锻成φ25 mm棒材的Nb-V-Ti微合金化0.37C-1.45Mn非调质钢(/%:0.37C,0.60Si,1.45Mn,0.025Nb,0.078V,0.017Ti)在950~1150℃,形变速率0.1~10 s-1,形变量60%的单道次压缩的奥氏体动态再结晶过程。结果表明,Nb-V-Ti微合金化0.37C-1.45Mn钢形变温度越高,形变速率越低,则发生动态再结晶的形变储能越小,越容易发生动态再结晶。试验用钢因含有Nb而动态再结晶激活能较高,为Qd=353.80 kJ/mol。  相似文献   

6.
通过Gleeble-1500热模拟试验机研究了321钢(/%:0.028C、0.69Si、1.21Mn、0.030P、0.001S、17.33Cr、9.19Ni、0.31Ti)单道次高温(900~1 200℃)压缩(0.01~1 s-1)时的动态再结晶。结果表明,变形温度越高,应变速率越低,321钢的软化作用越强,热变形条件下的真应力-真应变曲线一般没有明显的应力峰值,在应变速率0.01、0.1、1 s-1时321钢动态再结晶开始发生的温度分别为1 050、1 150、1 150℃;在1 200℃变形时,仍然只发生部分动态再结晶。321钢热变形激活能Q=422.72 kJ/mol,动态再结晶Z参数Z=εexp[422 720/(RT)],临界应变εc=0.035 67Z0.066 04。  相似文献   

7.
用Gleeble-1500热模拟实验机对YF45MnVS钢(%:0.48C、0.45Si、1.36Mn、0.009P、0.043S、0.086V)200 mm×200 mm铸坯上切取的Φ8mm试样进行950~1 200℃,变形速率10-2~101s-1变形量10%~50%的单道次等温压缩试验。结果表明,低应变速率和大变形量有利于实验用钢动态再结晶的发生。通过计算得到YF45MnVS钢在950~1 200℃的动态再结晶激活能为299.55 kJ/mol。  相似文献   

8.
付建辉 《特殊钢》2020,41(2):1-5
通过热压缩实验研究了HGH3126镍基合金(/%:≤0.005C,17.20Cr,4.21W,16.25Mo,5.49Fe,0.46Mn,0.20V)在变形温度为950~1200℃、应变速率为0.01~10 s-1的热变形行为。基于Arrhenius方程和Zener-Hollomon参数模型,建立了HGH3126合金高温热变形的流变应力本构方程。通过对高温热变形后的HGH3126合金显微组织进行观察,分析了变形温度和应变速率对HGH3126合金动态再结晶行为的影响。结果表明,变形温度越高,合金动态再结晶越容易形核;应变速率越小,合金动态再结晶过程进行得越充分。当应变速率0.1 s-1,变形温度1100℃时,该合金基本发生完全动态再结晶。  相似文献   

9.
利用Gleeble-3500热模拟试验机在变形温度900~1 200℃和应变速率0.01~10 s-1范围内,对40Cr钢试样进行压缩实验。研究了40Cr钢真应力-应变曲线特征,建立了峰值应力、应变速率和变形温度间的本构方程,并确定了40Cr钢热变形激活能为310.625 kJ/mol。研究结果显示:40Cr钢热变形时的流变软化机制为动态回复和动态再结晶;随着变形温度增加和应变速率减小,流变应力减小;试样的变形温度越高,应变速率越低,显微组织中的动态再结晶越完全,并且动态再结晶晶粒越容易长大。  相似文献   

10.
采用Gleeble-3800热模拟机进行单道次压缩试验,研究了AH60C高强钢在变形温度850℃、950℃、1050℃,应变速率0.1 s-1、1s-1、10s-1条件下的动态再结晶行为。采用Zener-Hollomon参数的正弦函数计算出材料参数值α、n、A以及AH60C高强钢热变形激活能Q,并且利用加工硬化原理来计算动态再结晶临界条件。结果表明:随着变形温度的升高,流变应力降低,随着应变速率的增大,流变应力增大,并且变形温度越高,应变速率越低,动态再结晶越彻底;计算出的AH60C高强钢热变形激活能Q为293 305.163 J/mol;临界应变随着变形温度的升高而降低,随着应变速率的增大而增大,且在本次试验条件下,AH60C高强钢动态再结晶临界应变预测模型为εc=3.04×10((-4))Z1.889 75。  相似文献   

11.
采用Gleeble-1500热模拟机单道次热压缩实验,研究了变形温度850~1 000℃和变形速率0.1~10s-1条件下合金工具钢SKS51(/%:0.78C、0.20Si、0.40Mn、1.5Ni、0.30Cr)的动态再结晶行为。实验结果显示SKS51钢动态再结晶在高的变形温度和低的变形速率情况下更易发生,回归法得出动态再结晶的变形激活能和应力指数分别为336.79 kJ/mol和4.26,并在此基础上建立了动态再结晶峰值应变(εp)、稳态应变(εs)及临界应变(εc)模型。  相似文献   

12.
厉勇  傅万堂  郭明伟  曲明贵  周维海 《钢铁》2006,41(9):70-72,81
用Gleeble-3500热力模拟试验机在温度为1 223~1 323 K,应变速率为0.2~10 s-1的条件下对一种非调质连杆用高碳微合金钢进行了热压缩变形试验,测得了其流变曲线,并观察了变形后的组织.试验结果表明,流变应力和峰值应变随变形温度的降低和应变速率的提高而增大.试验用钢在真应变为0.8,温度为1 223~1 323 K,应变速率为0.2~10 s-1的条件下,发生完全动态再结晶.测得试验用钢的热变形激活能为289.9 kJ/mol,并得出了其热变形方程,以及动态再结晶晶粒尺寸与Zener-Hollomon参数之间的关系和动态再结晶状态图.  相似文献   

13.
曹云飞  余伟  刘敏  蒋蕊  王纯 《钢铁》2020,55(5):103-108
 细化奥氏体晶粒是控制钢的组织与力学性能的重要方法。为了控制38MnSiVS非调质钢在轧制待温时间内的晶粒尺寸,利用热变形与定量金相方法,研究了38MnSiVS非调质钢变形后在不同待温温度、不同待温时间的再结晶奥氏体晶粒长大规律。结果表明,38MnSiVS非调质钢再结晶奥氏体晶粒长大过程与时间满足幂指数关系。基于试验数据,通过数值解析和非线性回归分析求得Anelli、Sellars与Sellars修正模型3种晶粒长大模型,其中Sellars修正模型预测误差最小为0.73%,能够更加精确地预测38MnSiVS非调质钢晶粒长大规律。由于形变储能等因素的影响,变形后再结晶奥氏体晶粒长大激活能为161 737.65 J/mol,远小于再加热过程奥氏体晶粒长大激活能。  相似文献   

14.
通过热模拟实验、光学金相及透射电镜分析观察,研究了奥氏体化条件、变形温度、变形速率、变形量以及道次间隔时间对曲轴用非调质钢C38N2轧制道次间的静态再结晶体积分数和残余应变率的影响规律.实验结果表明:随着变形温度的升高、变形速率的增大、变形量的增大或道次间间隔时间的增长,静态再结晶的体积分数逐渐升高,道次的残余应变率逐渐降低;原始奥氏体晶粒尺寸增大,静态再结晶体积分数降低,但变化不大;在1250℃以下,随着奥氏体化温度的升高,静态再结晶体积分数降低不明显,但在1250℃以上,奥氏体化温度的升高明显降低了静态再结晶体积分数.通过线性拟合以及最小二乘法,得到静态再结晶体积分数与不同变形工艺参数之间关系的数学模型;对已有残余应变率数学模型进行修正,得到含有应变速率项的残余应变率数学模型,拟合度较好.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号