首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
根据化学位图绘制基本原理和方法,分析了Mg2+-Ca2+-H2CO3-H2O、CaCO3·MgCO3-SO2-4-H2O、Ca2+-F--H3PO4-H2O、Ca5(PO4)3F -SO2-4-H2O和Mg2+-H3PO4-H2O体系在常温下的热力学平衡,研究了Ca-Mg-P-H2SO4体系在常温下的溶液-矿物溶解、沉积条件,形象、直观地描述了该溶液体系化学平衡条件及反应进行的限度,为磷矿选矿和湿法浸出过程提供理论依据.结果表明:硫酸可以促进白云石和氟磷灰石的溶解,溶解产物主要是Mg2+、H3PO4,其次是H2PO-4,固相产物主要是硫酸钙晶体;氟磷灰石溶解过程中产生的磷酸在酸性条件下不与溶出的Mg2+反应形成Mg3(PO4)2.  相似文献   

2.
研究了氯化物溶液体系中不同条件下与硫酸镁晶相平衡的Mg2+浓度的变化规律。试验结果表明:在75℃条件下形成硫酸镁结晶并达到平衡时,溶液中Mg2+浓度随H+、Fe3+浓度升高和SO2-4在阴离子中占比增大而降低;Fe3+浓度超过0.5mol/kg时,平衡固相为MgSO_4·H_2O和FeH(SO_4)_2·4H_2O的混合物;Fe~(3+)低于0.5mol/kg时,平衡固相为MgSO_4·H_2O。  相似文献   

3.
锂云母矿物提锂浸取液中含有较高浓度的铝,如何有效去除或者回收铝成为降低综合提锂成本的关键。在综合考察碱法、酸法及溶剂萃取法等传统回收铝的方法的优点和不足之处的基础上,提出了一种更为有效的除铝方法,即铝与浸取液中K等其他组分形成钾明矾等含附加值的矾,在去除铝的同时又能联产其他化工产品,从而降低矿物提锂的综合成本。本研究采用等温溶解平衡法对浸取液特征体系中两个三元子体系Li2SO4-Al2(SO4)3-H2O和K2SO4-Al2(SO4)3-H2O在低温下(5℃)的稳定相平衡关系进行了初步研究,可以为浸取液成矾除铝提供基础数据及理论指导。依据溶解度数据绘制出Li2SO4-Al2(SO4)3-H2O和K2SO4-Al2(SO4)3-H2O的稳定平衡相图,平衡液相所对应的固相由X射线粉末衍射仪(XRD)确定,并划分出相应的结晶区。由相图可以看出,Li2SO4和Al2(SO4)3并未形成复盐,而K2SO4则与Al2(SO4)3可在较大浓度范围内形成钾明矾KAl(SO4)2·12H2O。研究表明,Li+,Al3+不易成矾,而K+和Al3+易形成钾明矾。生产实践中,可以通过调节浸取液中Li+、K+和Al3+的组分浓度,使其浓度范围控制在钾明矾的成矾结晶区,最终使高浓度的铝通过成矾结晶的形式得到综合回收利用。同时又能使Li和K组分得到初步分离,进而降低综合提锂成本,提高矿物提锂工艺的生产效益。  相似文献   

4.
盐湖卤水锂萃取体系的性能研究   总被引:2,自引:2,他引:0       下载免费PDF全文
采用溶剂萃取法从盐湖卤水中提取锂,筛选出萃取剂为TBP,协萃剂为MIBK,共萃剂为FeCl_3,稀释剂为磺化煤油。优化萃取条件如下:40%TBP+20%MIBK+40%磺化煤油、O/A=2.5、n(Fe~(3+)/Li~+)=2.5、初始水相H+0.04mol/L。结果表明,单级锂萃取率为91.21%,镁萃取率为2.10%,锂镁分离系数为483.05。经化学法、红外吸收光谱法证实了新萃合物的生成,并通过斜率法初步推断其组成为LiFeCl_4·4TBP·MIBK。根据离子缔合萃取理论讨论了萃取过程,证实了该混合体系适合从高Mg/Li、低酸度的氯化物型盐湖中萃取锂。  相似文献   

5.
在0.1mol/LH2SO4-H3PO4介质中电解0.02mol/LFe2(SO4)3溶液,使Pt阴极上产生Fe2+;采用H2SO4-H3PO4-(NH4)2S2O8分解铬矿,用KMnO4将其中Cr3+氧化为Cr2O27-;以Fe2+对Cr2O27-进行库仑滴定,采用永停终点法确定库仑滴定终点,根据电解定律计算三氧化二铬含量。用本法和硫酸亚铁铵滴定法分别测定铬矿标样中三氧化二铬,本法相对误差为0.22%,RSD(n=11)为0.034%,测定结果的准确度和精密度明显高于硫酸亚铁铵滴定法。  相似文献   

6.
本文主要通过水热法制备了锂离子电池正极材料Li3V2-2x/3Mgx(PO4)3/C,并研究了掺杂金属元素Mg对Li3V2(PO4)3晶体结构和电性能的影响。结果表明,当Mg含量x=0.45(质量分数,下同)时,且在温度为750℃焙烧6 h的条件下所制备的样品具有较好的晶体结构、微观形貌和电化学性能。镁掺杂量在一定范围内变化不会影响磷酸钒锂本身的单斜结构。在3.0~4.8 V、0.1 C倍率下,Li3V1.70Mg0.45(PO4)3/C复合材料首次放电比容量高达154.4 mAh·g-1,首次库伦效率为94.32%,在不同倍率下循环25次之后的容量依然可以达到112.8 mAh·g-1。掺杂镁的样品与未掺杂的样品相比,容量和循环倍率性能均有了很大程度的提高。  相似文献   

7.
采用化学分析的方法确定锰电解返回液输送管道中结晶沉淀物的主要成分是六水铵镁矾复盐((NH4)2Mg(SO4)2·6H2O)。实验得到温度对锰电解返回液结晶析出的影响关系曲线为Cr=0.017T+1.28。为避免冬季生产发生结晶沉淀堵塞管道的问题,硫酸镁与硫酸铵浓度之和不应超过1.45mol/L。根据(NH4)2SO4与MgSO。可形成不同Mg2+/2NH4+比的两种复盐的原理,探索了高温浓缩结晶分离Mg2+离子的方法,110℃结晶析出物中镁铵比为1.02,高于结晶前溶液中的镁铵比O.92。  相似文献   

8.
总结了铝锂合金高强化成分设计的发展过程,综合了课题组主合金元素Cu、Li含量,微合金元素Mg、Ag、Zn及稀土(RE)元素等对Al-Cu-Li系铝锂合金力学性能及析出相影响规律的研究结果。铝锂合金中Cu/Li比例较低时有利于时效时δ′相(Al3Li)析出,但不利于强度的提高;而Cu/Li比增加则有利于时效时T1相(Al2CuLi)及θ′相(Al2Cu)析出,从而有效提高铝锂合金的强度。微合金化元素Mg能有效促进T1相形核析出,加速铝锂合金时效响应速度,提高T1相析出密度,进而提高铝锂合金强度;Mg+Ag及Mg+Zn复合添加能进一步促进T1相析出,提高T1相分布密度;Mg+Ag+Zn三元复合微合金化具有最好的促进T1相形核析出及提高铝锂合金强度的效果。在高Cu/Li比铝锂合金中添加微量RE元素将导致时效时含Cu强化相T1相及θ′相减少,降低铝锂合金强度。铝锂合金高强化成分设计的思路应是在Mg、Mg+Ag、Mg+Zn或Mg+Ag+Zn微合金化基础上,提高Cu+Li总量并保持较高Cu/Li比。  相似文献   

9.
为改善铝阳极的性能,选用工业纯铝(99.8%),熔炼了Al-0.1 In-0.1 Ga-3Ph合金.在4 mol·L-1 KOH溶液中添加znO,KMnO4,Na2SnO3·4H2O,C4H4O6KNa4H2O,研究添加剂对合金阳极行为的影响.结果表明:溶液中添加znO后合金的析氢腐蚀得到明显的抑制,同时降低了合金的极化;KMnO4的加入可大幅提高合金的开路电位,但对抑制合金析氢腐蚀作用不明显;Na2SnO3·4H2O可提高合金的开路电位,降低极化.复合添加剂(11 mmol·L-1ZnO+0.61 mmol·L-1KMnO4)使合金开路电位负移,并有效抑制其析氢腐蚀,提高了阳极活性,综合性能较佳.  相似文献   

10.
许延辉  胡卫红  徐海平 《稀土》2006,27(6):55-58
利用稀土冶炼过程中产生的硫酸铵废水制备了磷酸铵镁,对影响产品的工艺参数进行了研究。采用摩尔比[M g2+]∶[NH4+]∶[PO43-]=1.2∶1.2∶1,体系pH为9~10,在室温下反应,可得到磷酸铵镁,且废水中氨的利用率可达到90%以上。对磷酸铵镁进行了成分分析和X射线衍射分析,得到的主要产品组成是M gNH4PO4.6H2O。  相似文献   

11.
基于锂离子电池充放电过程的可逆氧化还原反应原理,提出利用NiPO_4/LiNiPO_4电极对盐湖卤水进行锂镁分离的思路。运用同系线性规律对Me(Li,Na,K,Mg)-Ni-P-H_2O中NiPO_4,Ni_3(PO_4)_2,LiNiPO_4,Na NiPO_4,KNiPO_4,Mg_(0.5)NiPO_4的标准吉布斯自由能进行了估算。在热力学计算的基础上绘制了298.15 K时,Me(Li,Na,K,Mg)-Ni-P-H_2O系的φ-p H图,讨论了NiPO_4对盐湖卤水中主要金属离子(Li~+,Na~+,K~+,Mg~(2+))的选择性吸附行为。结果表明:水溶液中存在LiNiPO_4,Na NiPO_4,KNiPO_4的稳定区,还原电位(vs SHE)分别为0.2379,-0.0291,0.0209 V,不存在Mg_(0.5)NiPO_4的稳定区。在实际盐湖卤水(Mg/Li质量比为67)离子浓度条件下,NiPO_4/LiNiPO_4电极对仍具有良好的选择性提锂功能。而天然卤水的p H一般在7左右,表明此时无需添加酸或碱来调节卤水的p H,这与节能减排和环境保护的理念不谋而合,不断重复脱嵌锂过程即可从盐湖卤水中选择性提取锂。  相似文献   

12.
研究了利用碳酸氢铵法与磷酸铵镁法连续处理富镁硫酸锰溶液的工艺。结果表明,利用碳酸氢铵法分离锰镁的优化条件为:碳酸氢铵浓度2.0 mol/L,溶液p H值=6.8~7.0,反应温度40℃,反应时间30 min,不静置直接抽滤洗涤。此时锰回收率达到了98.94%,镁保留率达到了89.07%。继续利用磷酸铵镁法回收溶液中保留的镁离子,以镁离子与磷酸根离子摩尔比为1.2∶1加入磷酸氢二铵,调p H=10,镁的回收率达到了97.75%。采用这两种方法连续处理富镁硫酸锰溶液,不仅有效地分离了锰镁离子,还得到了市场价值较大的碳酸锰和磷酸铵镁,具有较大的应用价值。  相似文献   

13.
以Na2Mo O4为主盐,与氧化剂H2O2、成膜促进剂NaF和Na2Si O3一起组成化学转化液,在AZ31镁合金表面制备钼酸盐转化膜,利用扫描电镜和X线光电子能谱仪分析转化膜的形貌和组成,通过电化学阻抗测试研究转化膜在3.5%Na Cl溶液中的腐蚀行为,并讨论成膜机理,研究转化液中Na2Mo O4浓度与p H以及成膜温度和时间对薄膜结构与耐腐蚀性能的影响。结果表明:转化液的优化组成为0.2 mol/L Na2Mo O4+0.12 mol/L NaF+0.014mol/L Na2Si O3+0.012 mol/L H2O2;优化工艺条件为p H=5,温度60℃,转化时间30 min;转化膜为黄棕色,主要由Mg Mo O4,Mg F2,Mo O2,Mo O3和Mg Si O3组成,转化膜宏观上完整均匀,存在网状微裂纹;钼酸盐转化膜能有效提高AZ31镁合金的耐腐蚀性能,对基体合金有一定的保护作用。  相似文献   

14.
采用溶胶-凝胶法将Keggin型H4Si W12O40负载在Si O2上,并用30%H2O2溶液对其进行敏化,制得H4Si W12O40/Si O2/H2O2光催化剂,分别利用傅里叶变换红外光谱仪(FT-IR)、X射线衍射(XRD)对该光催化剂进行表征分析,结果表明H4Si W12O40高度分散在Si O2上,并且经过H2O2溶液处理的光催化剂在935.2 cm-1出现了一个较弱的过氧基吸收峰,这与过氧多酸化合物的吸收峰较一致。另外,进行甲基橙模拟废水溶液在黑暗条件下的吸附-脱附平衡实验,结果表明在30 min达到吸附-脱附平衡,故优化组实验选择在黑暗下搅拌30 min以达到吸附-脱附平衡。接着对甲基橙的初始浓度、溶液p H以及催化剂用量进行优化。实验发现,在甲基橙初始浓度为15 mg·L-1,溶液p H为1.0,催化剂的用量为6 g·L-1的优化情况下,光降解3.0 h,甲基橙的降解率达到99.0%,H4Si W12O40/Si O2/H2O2光催化降解甲基橙溶液的过程符合一级动力学反应规律;且H4Si W12O40/Si O2/H2O2对甲基紫、孔雀石绿、亚甲基蓝、罗丹明B和甲基红均具有较高的光催化活性,降解率达87.5%~100.0%。  相似文献   

15.
废催化剂常含有一定量的积碳和硫,因此在回收处理时多采用焙烧处理脱碳脱硫。在焙烧含W,Mo,Ni,Co的废催化剂过程中会产生一定量的复合氧化物,此外新型钼酸镍、钼酸钴、钨酸镍催化剂也在大量使用。这类钨、钼酸盐由于稳定性较高,采用已有工艺极难处理。针对此类复合氧化物的分解问题,绘制了25℃下Me-Mo(W)-H2O系和Me-Mo(W)-NH3-H2O系Me-Mo(W)-EDTA-H2O系的热力学平衡图,并对NiMoO4,CoMoO4,NiWO4的碱浸出和配合物浸出进行了热力学分析。研究结果表明:NaOH分解的难易顺序为NiWO4CoMoO4NiMoO4;氨可极大地降低NiMoO4,CoMoO4,NiWO4在水溶液中的稳定性,氨性溶液中Ni,Mo,Co,W的平衡浓度比水溶液中提高了1×102~1×104倍(pH约为8~11),其分解难易次序为NiWO4NiMoO4CoMoO4;EDTA同样可极大提高NiMoO4,CoMoO4,NiWO4在水溶液分解的Ni,Co,Mo平衡浓度,在EDTA总浓度为1 mol·L-1的条件下,NiMoO4,CoMoO4分解的最高Ni,Co平衡浓度为1 mol·L-1,而NiWO4最高Ni平衡浓度仅为1×10-5.08mol·L-1([Y]T=1 mol·L-1),3种复合氧化物在EDTA水溶液中分解的难易顺序为NiWO4NiMoO4CoMoO4。碱分解、氨浸出以及EDTA配合物浸出均可选择性浸出NiMoO4,CoMoO4,而NiWO4则需要采用同时回收载体氧化铝的高压高碱分解法。  相似文献   

16.
用吸附法从察尔汗盐湖卤水中提取锂   总被引:9,自引:0,他引:9  
研究了用两步吸附法从察尔汗高镁低锂盐湖卤水中提取锂。将卤水用水稀释并用盐酸调整pH至4~6之间,先用自制的锂吸附剂吸附锂、镁,用水淋洗负载吸附剂,获得含锂、镁溶液,再用阳离子交换树脂吸附锂、镁,之后用1mol/L HCl或60g/L NaCl溶液淋洗锂,用3mol/L HCl或150g/L NaCl溶液淋洗镁。含锂淋洗液用Na2CO3沉淀可获得Li2CO3产品。该方法简单,易行,无环境污染,经济效益明显。  相似文献   

17.
采用等温溶解度法测定了10~70℃时(NH4)3PO4-NH3·H2O-H2O三元系中磷酸铵的溶解度,并绘制成相应的相图。结果表明:磷酸铵的溶解度随温度降低和氨浓度升高而下降。当溶液中氨浓度相同时,温度越低,则磷酸铵的溶解度越小。采用氨溶析结晶法从磷酸铵溶液中除去钾、钠杂质时,可通过提高溶液中氨浓度以及降低温度的方式,使得磷酸铵结晶析出,钾和钠留在结晶母液中,除去钾、钠,以达到净化提纯磷酸铵的目的。  相似文献   

18.
铝是废三元锂离子电池正极材料浸出液中的主要杂质之一,除铝是浸出液净化分离的重要步骤。针对传统中和沉淀除铝工艺存在镍、钴损失严重及萃取法除铝成本高等问题,绘制了298 K时Men+-PO43--H2O系(Men+:[Al]T、[Fe(Ⅲ)]T、[Fe(Ⅱ)]T、[Cu]T、[Ni]T、[Co]T、[Mn]T、[Li]T)组浓度对数-pH图,利用热力学平衡图对磷酸盐沉淀法从废旧三元锂离子电池硫酸浸出液中净化除铝过程进行热力学分析。结果表明:在合适pH范围可以形成难溶磷酸盐稳定区,pH为1~4.8时磷酸盐沉淀形成由易到难的顺序为Fe3+>Al3+>Cu2+ Fe2+>Co2+>Mn2+ Ni2+>Li+,磷酸盐沉淀法可以将铝与镍、钴、锰金属分开。试验数据表明,加入1.2倍理论量的磷酸钠,控制沉淀pH为4,溶液中铝、镍、钴、锰沉淀率分别为99.86%、1.35%、0.99%、2.09%。磷酸盐沉淀法从废旧三元锂离子电池硫酸浸出液中除铝是一种有效的方法。  相似文献   

19.
以一步法石煤提钒反萃液为研究对象,研究了最佳的沉钒初始条件以及沉钒时间、温度、p H、搅拌强度等对沉钒率和产物多聚钒酸铵(APV)质量的影响。为了解决酸性铵盐沉钒过程废水中NH+4过量的问题,需要使NH+4浓度尽可能的低,根据反萃液钒浓度、反萃液初始p H值和氨水用量三者之间的平衡关系,通过计算验证,确定沉钒的最佳初始条件是:反萃剂为8%H2SO4,反萃液钒浓度为19.91 g·L-1,反萃液初始p H=-0.18。酸性铵盐沉钒条件研究结果表明:沉钒p H值不同,沉淀产物APV的晶体类型也会存在差异,在p H=1.7~2.1和2.2~5.0的条件下,APV主要成分分别为NH4V3O8·0.5H2O和(NH4)2V6O16·1.5H2O;沉钒温度在20~50℃时,沉淀产物主要是Na V3O8·x H2O,多聚钒酸铵的沉淀反应并没有发生,温度50℃之后,沉钒产物才逐渐向NH4V3O8·0.5H2O转化;在最佳沉钒工艺:时间1 h、温度70~100℃、p H=1.9~2.0、搅拌强度400 r·min-1的条件下,沉钒率99%,APV纯度98%。  相似文献   

20.
研究了以新型的醚类有机相GA108为萃取剂,从废旧CPU中萃取金的过程;辅助一些热力学计算,考察分析了萃取时间t、相比O/A、母液氢离子浓度CH+、金离子浓度CAu3+、萃取温度T、萃取级数等萃取条件对GA108萃取性能的影响。结果表明:GA108萃取性能优良,具有快速、高效的萃取特点,3 min即可达到萃取平衡;相比和氢离子浓度分别在O/A=1∶3~1∶2,CH+=0.5~1.5 mol·L-1区间时,萃取性能恶化,应尽量避免该区间;萃取金离子浓度在700~1200 mg·L-1范围内萃取效果最好,实验结果说明,该萃取剂GA108适合高品位金的萃取;萃取反应为放热反应(ΔH=-17.11 kJ·mol-1<0),萃取过程宜在室温下进行;随萃取级数增加,萃取率增大。其最佳萃取条件为:T=25℃,t=3 min,CH+=4 mol·L-1,CAu3+=700~1200 mg·L-1,O/A=2∶1,二级萃取,在此萃取条件下,金萃取率可达到99.7%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号