首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
通过大型通用有限元软件ANSYS建立铸坯凝固过程有限元仿真分析模型,在拉速0.25~0.35m/min,钢水过热度20℃的条件下,对20钢Φ中600mm和40Cr钢Φ500 mm圆坯连铸过程进行了计算和分析,得出距液面0~32 m时铸坯表面温度变化曲线。计算结果表明,当20钢Φ600 mm圆坯的拉速为0.3 m/min时,结晶器出口坯壳厚度为30.9 mm,结晶器出口铸坯温度为1050℃,二冷区表面最低温度978℃铸坯在距液面19.71 mm处完全凝固。Φ600 mm圆坯连铸机20钢生产实践表明,拉速0.25 m/min,结晶器出口铸坯表面温度为1048℃,二冷区表面最低温度为918℃,与模拟结果相似。  相似文献   

2.
通过ANSYS软件建立了37Mn5钢Φ210 mm圆坯连铸的传热模型,研究了在铸坯传热过程中铸机拉速1.3~1.5 m/min,钢水过热度15°~60°,二冷比水量0.58~0.78 L/kg对铸坯表面温度、凝固坯壳厚度和凝固终点位置的影响。结果表明,控制稳定的较低拉速、低过热度、较弱二冷比水量可有效地避免37Mn5钢Φ210mm铸坯裂纹的形成,提高铸坯的冶金质量。  相似文献   

3.
在考虑二冷边界换热的条件下,建立了与厚板坯连铸机相适应的传热数学模型。用远红外测温仪测试X65管线钢230 mm×1650 mm铸坯表面温度,实验结果同模拟结果吻合较好。应用数学模型,对不同拉速下管线钢的连铸凝固过程进行了仿真计算,分析了拉速对出结晶器坯壳厚度、铸坯表面温度和液芯长度的影响,得出在给定的二冷条件下,为得到合理的铸坯表面温度,管线钢的拉速应为0.9~1.2m/min。  相似文献   

4.
连铸板坯凝固传热过程的计算机模拟   总被引:5,自引:0,他引:5  
建立了板坯连铸的凝固传热数学模型,充分考虑了弧形铸坯的几何特点,采用有限单元法求解控制方程。通过变参数φ来考虑铸坯内钢水和两相糊状区的导热系数,计算了参数φ、结晶热通量、拉速和二冷强度对铸坯表面温度和坯壳厚度的影响。结果表明,模型的准确性得到提高,拉速对固液界面有明显影响,二冷强度对铸坯表面温度影响非常大。  相似文献   

5.
吕龙厅  王平安  赵康  岳庆海 《河南冶金》2003,11(6):16-18,35
以安阳永兴钢铁公司1#方坯连铸机为研究对象,建立连铸坯凝固传热数学模型。研究了不同拉速、过热度及二冷比水量对铸坯表面中心和角部温度及铸坯凝固终点位置的影响。并对铸坯表面温度进行了实测,实测结果与模型计算基本吻合。与现场生产实际结合,优化二次冷却制度,铸坯质量得到明显提高。  相似文献   

6.
连铸二冷区铸坯表面温度测量   总被引:3,自引:0,他引:3  
介绍了CIT-M型红外辐射测温系统的工艺特点,利用该系统实测了板坯连铸的典型钢种在不同拉速条件下的铸坯表面温度。分析了拉速和冷却强度对铸坯表面温度的影响,为攀钢板坯连铸二冷配水制度的优化提供了依据。  相似文献   

7.
建立了Q345E钢Φ600 mm大圆坯凝固传热模型,利用Procast软件对其连铸凝固过程进行了数值模拟,并通过射钉试验结果验证。研究结果表明:浇铸温度对铸坯的表面与中心温度以及固液相分布影响很小;拉速每增加0.02 m/min,铸坯表面温度无明显变化,糊状区向前移动,凝固末端离结晶器液面距离增加约1.75 m;二冷比水量每增加0.01 L/kg,其二冷区表面温度约降低30℃,糊状区向后移动少量,凝固末端后移0.3 m左右;适宜的工艺条件为浇铸温度1 539℃、拉速0.22 m/min、二冷比水量0.08 L/kg。实际生产的Q345E钢Φ600 mm大圆坯中心缩孔0.5级,中心疏松1.0级,碳偏析指数不大于1.09,完全满足标准要求。  相似文献   

8.
15CrMoG钢Φ450 mm管坯连铸二冷工艺的优化   总被引:1,自引:0,他引:1  
建立了15CrMoG钢(%0.12~0.18C,0.80~1.10Cr,0.40~0.55Mo)弧形连铸Φ450 mm圆管坯的二冷工艺模型以优化连铸二冷工艺.生产结果表明,在0.4~0.6 m/min拉速下生产Φ450 mm 15CrMoG钢圆管坯时,采用弱二冷工艺,二冷比水量0.30~0.35 L/kg,延长二冷区长度,控制铸坯进入矫直点前表面温度在950 ℃以上,则铸坯的等轴晶率达47.0%~49.3%,无中心缩孔,近表面和中间裂纹0级,中心裂纹0~0.5级,断面碳偏析ΔC%为0.02%,硫偏析ΔS%为0.005%,满足了生产无缝管的铸坯质量要求.  相似文献   

9.
根据奥氏体不锈钢的热物理参数和二冷区各区出口目标温度,建立了不锈钢220mm×220 mm铸坯动态二冷综合控制模型和末端拉速电磁搅拌-拉速优化模型。304奥氏体不锈钢连铸生产应用结果表明,在该钢正常工作拉速0.8~1.1 m/min,根据目标温度(足辊1080℃,一区1 070℃,二区1060℃,三区1045℃,进拉矫机980℃)制定相应比水量(0.30~0.33 L/kg),模型实时计算表面温度与目标温度对比,进行在线控制,铸坯温度均匀、稳定,冶金质量良好。  相似文献   

10.
根据钢厂新建Φ600 mm圆坯连铸机的主要技术参数,建立柱坐标一维非稳态连铸坯凝固传热数学模型,运用有限差分法求解并编制相关程序,分析拉速、过热度、冷却强度对铸坯温度的影响,实现在给定水量下连铸坯温度场的计算。浇铸Φ500 mm轴承钢GCr15SiMn计算得出拉速每提高0.1 m/min,出结晶器处凝固坯壳厚度减薄约7.9 mm,凝固终点延长6.7 m。  相似文献   

11.
在分析37Mn5钢(/%:0.34~0.39C,0.20~0.35Si,1.25~1.50Mn)凝固特性的基础上通过用ANSYS软件建立连铸圆坯凝固热-力耦合数学模型,对Φ210 mm连铸圆坯凝固过程进行模拟,分析了40 t中间包,拉速1.4 m/min,浇铸温度1531℃时,二冷水比水量0.58~0.78 L/kg和各段配置对铸坯表面温度、坯壳厚度、液芯长度和表面应力的影响。模拟结果表明,比水量每增加0.1 L/kg,铸坯表面约下降18℃,试验比水量变化对出口坯壳厚度、液芯长度和表面应力影响不显著,但原工艺配水量0.68 L/kg下二冷0段和1段之间空冷部位出现高达185℃急速回温,最大应力达6.41×107Pa,通过保持配水量0.68 L/kg不变,调整各段配水量使0~1段间回温降至123℃,最高应力降至4.53×107Pa,铸坯裂纹基本消失,表面质量显著改善。  相似文献   

12.
朱叶  赵景存 《特殊钢》2021,42(1):11-15
利用Deform-3D软件对AISI4340钢Φ600 mm铸坯至300 mm×300 mm坯的开坯过程工艺参数进行了数值模拟。通过对加热温度、轧制速度、压下率、2道次压下对铸坯心部变形和材料流动影响的研究,分析了开坯成形过程中心部等效应力和材料变形特点,获得了Φ600圆连铸坯开坯成300 mm方坯的成形规律。结果表明:在1 070~1 140℃内,加热温度对心部的应变影响较小,变化幅度在2.3%左右。当轧制速度选1.0~2.0 m/s、总压下量一定的情况下,先大后小更利于心部缺陷的焊合。  相似文献   

13.
对比试验了铸坯的轻压下量(0~8 mm)及拉速(0.42~0.49 m/min)对42CrMo钢Φ195 mm轧材低倍组织和偏析的影响。结果表明,在现有工艺条件下,42CrMo钢过热度控制在20~30 ℃,二冷比水量0.30 L/kg,结晶器电搅100A/1.5 Hz,末端电搅400A/8 Hz,连铸拉速控制在0.49 m/min,总压下量6~8 mm,能有效改善42CrMo钢轧材的内部质量。  相似文献   

14.
根据武钢第一炼钢厂重轨钢连铸生产条件,建立380 mm ×280 mm方坯凝固传热数学模型,并采用射钉法验证及修正。模拟结果表明,U71Mn和U75V钢的凝固末端各自位于距结晶器液面16.96~21.68 m和16.50~21.17 m;减弱二冷强度或增大拉速,U71Mn和U75V钢凝固终点均会明显后移。根据计算结果,二冷制度由弱冷(0.346 L/kg)改为超弱冷(0.218 L/kg),拉速采用0.7 m/min,应用1~4~#机架轻压下,压下量为5~7 mm,U71Mn和U75V钢凝固终点延长至21 m以上。连铸工艺优化后,重轨钢大方坯中心疏松Ⅰ级内平均合格率由89.64%提高到99.50%。  相似文献   

15.
周开明  董娟 《特殊钢》2023,44(1):10-14
Φ1200 mm S355NL/Q355NE钢(Ceq 0.38~0.41)连铸圆坯的生产流程为100 t KR-BOF-LF-RH-R18 m连铸。采用全保护浇注、精确冷却工艺、三段式电磁搅拌、缓冷工艺等技术措施,过热度控制在15~45℃,拉速为0.14~0.20 m/min,电磁搅拌300 A/2 Hz,二冷比水量0.20 L/kg,圆坯入坑缓冷时间≥72 h,出坑温度≤300℃。检测结果表明,[O]≤0.0018%、[H]≤0.00008%;铸坯中心疏松≤1.5级、中心裂纹≤1.5级、缩孔≤0.5级;全截面碳含量极差≤0.07%;圆坯成分、低倍、表面均满足标准要求。圆坯经用户锻造成壁厚450~550 mm的风电法兰后,夹杂物、力学性能、内部探伤等质量指标检测结果,完全符合技术规范及用户使用要求。  相似文献   

16.
钢厂90 t LD-LF-VD-CC流程生产的Φ600 mm钢50CrMo连铸圆坯中心裂纹比率达到30%,分析得出:连铸圆坯中心裂纹全部出现在内弧一侧。主要原因是该钢种柱状晶发达,内弧柱状晶基本延伸到圆坯中心,在矫直时圆坯中心产生开裂并向内弧侧扩展。通过采取将结晶器电磁搅拌电流由260 A提高到400 A,中间包钢水过热度由30~50℃降到15~30℃,拉速由0.34 m/min降到0.28 m/min,进拉矫机前支撑辊及拉矫机辊道对弧精度由0.40~1.00 mm降到0.20 mm以下等措施,50CrMo钢Φ600 mm连铸圆坯中心裂纹全部消除。  相似文献   

17.
段贵生 《特殊钢》2008,29(1):45-47
对150 mm×150 mm连铸坯轧制Φ12 mm SCM435合金冷镦钢(%:0.35C、0.98Cr、0.16Mo)盘条的工艺试验表明:采用1020℃加热,900℃轧制,吐丝温度控制在780~800℃,相变前冷却速度控制在1℃/s左右,该钢可以获得均匀的铁素体+珠光体组织和良好的冷镦性能。  相似文献   

18.
刘平  姜丽  李峰 《特殊钢》2011,32(4):64-66
120 t转炉-LF-VD-连铸工艺生产37Mn5钢的280 mm×380 mm连铸坯易出现纵向裂纹。用Gleeble1500D热模拟试验机试验和分析了在1300~800℃时37Mn5钢(%:0.34~0.38C、1.30~1.55Mn)和45钢(%:0.42~0.50C、0.50~0.80Mn)280 mm×380 mm连铸坯的热塑性和力学性能,以及室温和1300℃之间加热和冷却时的膨胀-收缩效应。与45钢比较,得出≤950℃时37Mn5钢连铸坯的热塑性较低,在相变范围的体积变化较45钢铸坯大,导致37Mn5钢铸坯出现纵向裂纹。因此应降低37Mn5钢铸坯在540~870℃范围内的加热和冷却速度,以避免产生纵向裂纹。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号