首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 476 毫秒
1.
控制废钢质量、优化废钢结构有利于降低炼钢生产成本,减少环境污染,对转炉炼钢生产具有重要意义。通过理论计算和熔化试验,研究了不同废钢与转炉物料消耗及渣量之间的关系。结果表明,废钢质量对转炉钢铁料消耗和炉渣量具有显著影响。当转炉废钢比为20%时,废钢中杂质质量分数增加6%,钢铁料消耗量增加约为23 kg/t,带入渣量增加约为71.4 kg;锰的质量分数增加1%,产生钢水量约减少12.4 kg。质量较好的废钢带入转炉杂质少,利于降低钢铁料消耗和炉渣量;转炉中大量使用溢渣粉等废钢会引起钢铁料消耗和炉渣量显著增加。在此基础上,利用某企业120 t转炉进行废钢结构优化试验,研究了采用不同废钢配比冶炼对钢铁料消耗、炉渣量、终点磷含量和终点碳含量的影响。发现在该企业实际生产条件下,最优废钢配比(质量分数)为重型废钢33.3%、钢筋头16.7%、普通生铁26.7%、硫钢块6.7%和溢渣物16.6%。当120 t转炉采用最优废钢配比冶炼时,平均钢铁料消耗为1 052.9 kg/t,平均炉渣量为108.7 kg/t,冶炼铁损小;且转炉终点钢水平均w([P])、w([C])分别为0.030%、0.106%,满...  相似文献   

2.
管挺  王耀  刘飞  邹长东  王建华 《特殊钢》2019,40(3):19-22
通过对转炉炼钢过程的平衡计算结果进行分析,得出了提高废钢比的措施:减少渣量,减少冷却剂用量和添加升温材料等。结合理论计算和生产实践,减少1 kg/t炉渣可提高废钢比0.10%,减少1kg/t冷却剂可提高废钢比0.19%,增加1kg/t无烟煤可提高废钢比0.27%,增加1 kg/t清洁升温剂可提高废钢比0.41%,工艺优化后转炉废钢比可由17.0%提高到23.1%以上。  相似文献   

3.
为更加多元化利用海绵铁,降低冶炼成本,在相同冶炼制度下,使用海绵铁分别替代冷料中的钢边和统废进行转炉炼钢试验。结果表明:对于转炉+LF工艺、成品S在0.025%以上的钢种,海绵铁加入量不大于废钢比的40%;海绵铁加入量占废钢比40%时,替代钢边进行冶炼,氧耗增加0.62 m~3/t,石灰消耗减少0.48 kg/t,钢铁料消耗增加0.48 kg/t,吨钢节约成本8.4元;替代统废时,氧耗增加0.91 m~3/t,石灰消耗减少0.52 kg/t,钢铁料消耗降低2.74 kg/t,吨钢节约成本6.878元;但海绵铁导致成品中S含量呈上升趋势,增加了LF处理成本。  相似文献   

4.
杨怀春 《甘肃冶金》2011,33(5):29-30
转炉使用直接还原铁代替废钢工艺可行,合理比例10%~30%;使用还原铁提高金属收得率,降低转炉吹损;使用直接还原铁对转炉钢水硫元素起到稀释作用。冶炼中应当适当增加石灰用量,40 t转炉吨钢石灰消耗增加5.0 kg/t。  相似文献   

5.
朱荣  任鑫  薛波涛 《钢铁》2023,(3):1-10
中国钢铁行业发展取得长足进步,年钢产量连续多年位居全球第一,由此带来的CO2排放等环保压力也日益凸显。降低钢铁行业CO2排放至关重要。长流程炼钢工艺的吨钢CO2排放量约为短流程炼钢工艺的3.5倍,如何降低长流程炼钢碳排放对钢铁工业的低碳发展具有重要意义。提出转炉炼钢极限碳排放工艺技术,从“低碳铁水”、“低碳冶炼”和“低碳原料”3个方面,研究分析长流程-转炉炼钢工艺的减排能力及潜力。在低碳铁水生产方面,依据现有可能实现的技术,铁水生产的碳排可由当前吨铁水碳排1.7 t/t降低至0.8 t/t;在低碳原料方面,转炉炼钢工序生产所需原辅料极限碳排放可由当前吨钢碳排197.5 kg/t降至61.7 kg/t;转炉炼钢工序采用低碳冶炼单元技术,吨钢碳排将显著下降,转炉采用20%废钢和50%废钢,吨钢极限碳排将降低至727 kg/t和466 kg/t。转炉炼钢工序使用50%废钢冶炼,喷吹生物质、采用绿电、低碳原料,转炉工序碳排放强度将从107 kg/t降至-186 kg/t,实现转炉工序“负碳炼钢”;精炼、连铸等工序着眼绿色低碳技术...  相似文献   

6.
针对马钢65 t转炉加入铁矿石替代部分废钢后冶炼操作和炼钢成本发生变化,通过测算铁矿石与废钢的冷却效应,得出1 kg铁矿石冷却效应为3.76 kg废钢的冷却效应。在此基础上,分别研究了铁矿石加入量对转炉吹炼的影响,以及熔池温度和铁矿石密度对铁矿石还原率的影响。结果表明:熔池温度在1550℃时,铁矿石还原率达到最大值65.23%,铁矿石加料时机应选择在吹炼中前期加入;铁矿石密度越小,越有利于铁矿石还原,合理的铁矿石密度范围为3.0~4.0 g·cm-3。通过控制铁矿石加入量和加入时机,以及优化转炉冶炼过程操作,提高了吹炼的平稳性,铁矿石用量由7.46 kg/t提高至17.91 kg/t,转炉终渣主要成分变化不大,终点磷含量符合内控要求,转炉炉况未见明显侵蚀,实现了转炉炼钢降本增效目标。  相似文献   

7.
随着中频炉等落后钢铁产能的淘汰,市场上的废钢多了,炼钢厂于2017年1月份开始提高转炉入炉废钢比,以120t转炉为例,实现了采用高废钢比的炉次每炉钢多消耗了废钢40kg/t,冶炼周期缩短了0.83min/炉,1~4月实现高废钢比炉次的比例为22.41%,节约成本7.17元/t。  相似文献   

8.
提高转炉废钢比,有助于降低铁水消耗,实现节能降耗。研究表明,废钢生产粗钢其CO2排放量仅为长流程的27%,粉尘排放为10%,能耗为41%。综述了提高转炉废钢比技术的进展,归纳总结其实践效果,探讨有竞争力的转炉高废钢比冶炼技术。  相似文献   

9.
太钢二炼钢在80 t转炉上采用直接还原铁代替专用废钢冶炼品种钢的试验并推广使用,结果表明,直接还原铁代替废钢合适的比例为35%~50%,使用部分直接还原铁后转炉脱磷能力增加,脱磷率提高2.4%;80 t转炉配加5 t直接还原铁,石灰消耗增加9.3 kg/t;使用直接还原铁代替部分专用废钢,钢中残余元素及有害元素含量都很低.  相似文献   

10.
针对转炉生产需提高废钢比、降低铁水消耗的问题,安源炼钢厂对开发的铁水空罐加废钢后至炼铁工序受铁的新工艺进行实践及探讨。结果表明:单罐吨铁受废钢率达到53. 07 kg/t,转炉铁耗降至835 kg/t以下,转炉废钢比达到20%,金属料成本明显下降,取得了显著的经济效益。  相似文献   

11.
近年来,随着国内废钢量的逐步增加,与国家相关部门提出的规划要求,国内外很多转炉炼钢厂都在努力增加转炉废钢的熔化能力以降低铁水消耗量。某钢铁公司针对现有4#转炉100t铁水包新建预熔预热处理工艺,使铁水包废钢比最高为8%,理论上实现降低炼钢铁水消耗约40kg/t。同时因为预熔预热后减少铁水温降,缩短了转炉冶炼所需要的时间,对企业实现节能减排起到一定作用。  相似文献   

12.
近年来,随着国内废钢量的逐步增加,与国家相关部门提出的规划要求,国内外很多转炉炼钢厂都在努力增加转炉废钢的熔化能力以降低铁水消耗量。某钢铁公司针对现有4#转炉100t铁水包新建预熔预热处理工艺,使铁水包废钢比最高为8%,理论上实现降低炼钢铁水消耗约40kg/t。同时因为预熔预热后减少铁水温降,缩短了转炉冶炼所需要的时间,对企业实现节能减排起到一定作用。  相似文献   

13.
鞍钢集团朝阳钢铁有限公司炼钢厂为了保证转炉钢产量,采取了降低转炉造渣材料消耗、降低转炉出钢温度、提高铁水"一罐制"比例等措施。采取措施后,转炉废钢比由13.0%提高到21.5%,铁水单耗降低了60 kg/t。实践表明,当转炉铁水单耗为880 kg/t时,炼钢利润最佳。  相似文献   

14.
针对八钢铁水供应不足且铁水成分波动较大的问题,文中在现场冶炼数据采集的基础上,依据转炉冶炼的物料平衡、热平衡以及现场试验,研究了铁水成分、铁水重量、铁水温度、出钢温度以及留渣操作等工艺参数对废钢加入量的影响.通过采用留渣操作、适当提高铁水温度、减少辅料消耗以及适当降低转炉出钢温度等措施,转炉废钢比由16.4%提高到21.3%,脱磷率由79.3%提高到93.3%,同时石灰和白云石消耗量分别降低了3.3 kg/t钢和6.7 kg/t钢.   相似文献   

15.
我厂有3座50t转炉,1991年生产了转炉钢132万 t,板坯5.6万t、90方连铸坯14万t,钢铁料消耗1127kg/t、铁水消耗1030kg/t、转炉钢工序能耗年平均40.7kg标煤/t钢。近年来我厂在管理和技术上采取了如下节能降耗 措施:1.完善计量。为保证入炉铁水和废钢重量的准确性,1991年初,抓紧完善了混铁炉轨道衡,提高铁水的 装准率,为多吃废钢创造条件。目前做到双斗加废钢,轻重废钢搭配加,重废钢比大于12%,并实行严格考核。同时提高模铸车间百吨吊电子秤的作业率,使钢锭成锭率提高到96.85%,进一步降低了合理铸余。  相似文献   

16.
正低铁耗、高炉龄,高作业率是2018年柳钢转炉炼钢生产的现状。转炉厂炼钢一区拥有3座150 t顶底复吹转炉,日均产钢93炉,平均出钢量154 t,日产合格钢坯14 300 t,月平均作业率92%。铁水装入量138~144 t,废钢装入量26~30 t,铁水耗  相似文献   

17.
半钢炼钢条件下,以转炉炼钢物料平衡和热平衡为理论依据,制定出以焦丁为辅助热源的钢铁料新配比。通过试验证明,使用焦丁作为补热剂,在半钢条件稳定的前提下,1 t焦丁代替废钢4.93 t,并可降低石灰消耗2.06 kg/t,在保证终点技术指标得同时,废钢比(质量分数)由7.05%提高至13.54%,铁水消耗降低了40 kg/t,实现了降低钢铁料成本的目的。  相似文献   

18.
近年来随着废钢的不断堆积和环保压力的加大,大部分钢铁企业通过提高转炉废钢比来降低铁耗,该模式造成转炉冶炼成本增加的同时,也给转炉操作带来困难,因此转炉合理废钢比的预定一直是钢铁企业十分关心的问题。依据实际生产数据,采用拟合的方法构建吨铁利润和废钢比之间的函数表达式,并以邯宝炼钢厂典型钢种DC06为例,分别计算不同废钢价格下使吨铁利润达到最大的废钢比。结果表明,通过模型计算DC06钢种最佳废钢比为12.1%,即铁水消耗为967 kg/t,而该钢种根据经验确定的最佳铁水消耗为950 kg/t,两者相差不大,验证了模型的准确性。  相似文献   

19.
采用变量法精确确定了吨钢入炉铁水量调整后转炉系统的热量亏空,通过优化调整转炉造渣物料结构,减少强冷却效果物料的使用量,配加反应速度快、升温效率高的碳-硅质发热剂,稳定解决了吨钢铁水量降低所带来的转炉系统热量不足的问题,提高了入炉废钢比。在工业生产顺行的基础上,80 t转炉入炉铁水量由860 kg/t钢降低到800 kg/t钢。  相似文献   

20.
为降低成本,天钢开展了提高转炉废钢比的工艺研究,冶炼过程采用外加焦炭补偿热量,采用单渣留渣法进行冶炼。研究结果表明:添加焦炭可以有效地解决高废钢比冶炼条件下出钢温度不足的问题。焦炭加入量增大,其热量利用率降低。对于装入量为120t的转炉,焦炭的最大加入量应当控制在每炉1500kg左右。废钢比由原来的10.8%成功地提高到25%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号