首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Effect of MgF2-H3BO3 flux on the properties of (Ce,Tb)MgAl11O19 phosphor   总被引:1,自引:0,他引:1  
The green-emitting(Ce,Tb)MgAl11O19(CTMA) phosphor was prepared by the conventional high temperature solid-state reaction method.The effect of fluxes on the crystal structure,particle morphology,size distribution and photoluminescence properties of CTMA phosphor was investigated by means of the X-ray powder diffraction,scanning electron microscopy and photoluminescence spectrum.The results showed that the addition of appropriate amount of MgF2-H3BO3 flux improved the phase purity of CTMA phosphor,and influen...  相似文献   

2.
Preparation and Luminescent Properties of BAM Blue Phosphor forPDP and CCFL   总被引:3,自引:0,他引:3  
The Bax-0.05MgAl10O16 x :Eu0.05^2 (0.88≤ x≤ 1.02) phosphors with different Ba^2 content and the Ba0.85MgAl10O16.94:Eu0.05^2 phosphors with different fluxes (BaF2, MgF2, AlF3, BaCl2, MgCl2, AlCl3, H3BO3)were prepared by high temperature solid-state reaction method and their luminescence characteristics were studied under 254 nm excitation and vacuum ultraviolet (VUV) excitation. With the increase of the Ba^2 content, there is an increase in the emission intensity, and when x = 0.94, it reaches a maximum. Then, as the Ba^2 content increases, the emission intensity slowly falls. The fluorides have better flux-effects than chlorides and H3BO3. The possible mechanism in the process of particle growth was discussed when fluorides were used as fluxes. The effect of the activator concentration on this system was also investigated. The quenching concentration is 0.13 mol in per mole host.  相似文献   

3.
Amorphous phosphor 1.4YeO3·2.5Al2O3·0.1Tb2O3 (the same composition as Y2.8Tb0.2Al5O12) was prepared via a sol-gel method at relatively low temperature (i.e., below 650℃), which is much lower than that for the preparation of polycrystalline Y3Al5O12:Tb^3+ (above 1400℃). The amorphous phosphor prepared in the optimized conditions showed a bright green-yellowish luminescence, the intensity of which was comparable with that of polycrystalline sample and the emissions of which were assigned to 5D4 → 7Fj transitions of Tb^3+. Besides the emissions of Tb^3+, the amorphous samples prepared at temperatures below 500 ℃ presented a weak blue emission band around 420 nm.  相似文献   

4.
With stable physical properties,the rare-earth silicate phosphor of MgSiO3:Mn2+,Nd3+ is one of the suitable luminescent materials used in preparing functional fibers.In order to promote the afterglow properties of red-emitting phosphors,we prepared it by means of solid-state reaction,and the effect of manufacturing elements including H3BO3 and environmental factor of calcining temperature,type of flux on its luminescence property were investigated through evaluating their afterglow properties.The results showed that with the concentration of Nd 3+ increasing,the amounts of H3BO3 doping and calcining temperature,the afterglow time and initial brightness of the rare-earth silicate phosphor increased and then decreased gradually.The afterglow properties of different flux concentration were different from one to another as:H3BO3 >Na+>K+>No flux.  相似文献   

5.
The Ce^3 , Tb^3 and Mn^2 co-activated high color rendering index phosphor (Gd,Ce,Tb)(Mg, Mn)B5O10 was synthesized by ceramic method.The effects of synthetic conditions, such as the amount of boracic acid, Tb/Ce ratio, the concentration of hydrogen in nitrogen, the calcination temperature, on the luminescence properties were studied. It is shown that the high rendering index phosphor can be obtained when the amount of of boracic acid is added in 8% extra,  相似文献   

6.
(Ce_(0.04)Y_(2.96))Al_5O_(12) phosphor nanoparticles were prepared by a modified co-precipitation method with graphene oxide(GO) nanosheets used as dispersing agent. The GO concentration is controlled at 0.0.005,0.01, 0.02, and 0.03 g/L. The addition of lamellar GO nanosheets in the precipitant solution possibly enhances both the dispersity of precursor particles and the crystallinity of phosphor nanoparticles. Pure Ce-doped YAG phase is obtained by calcining the precipitate at 1000 ℃ for 3 h. The(Ce_(0.04)Y_(2.96))Al_5 O_(12)phosphor nanoparticles have an average size of 64 nm and there is no significant change on particle size with increase of the GO concentration in precipitant solution. The luminescence property of(Ce_(0.04)Y_(2.96))Al_5O_(12) phosphor nanoparticles varies with different concentrations of GO. The photoluminescence emission intensity of the optimum sample with 0.02 g/L GO is about 1.6 times higher than the sample without using GO.  相似文献   

7.
The long afterglow phosphor CaAl2Si2O8:Eu^2+ , Dy^3+ was prepared by a sol-gel method. The sol-gel process and the structure of the phosphor were investigated by means of X-ray diffraction analysis (XRD). It is found that the single anorthite phase formed at about 1000 %, which is 300 % lower than that required for the conventional solid state reaction. The obtained phosphor powders are easier to grind than those of solid state method and the partical size of phosphor has a relative narrow distribution of 200 to 500 nm. The photoluminescence and afterglow properties of the phosphor were also characterized. An obvious blue shift occurs in the excitation and emission spectra of phosphors obtained by sol-gel and solid state reaction methods. The change of the fluorescence spectra can be attributed to the sharp decrease of the crystalline grain size of the phosphor resulted from the sol-gel technique.  相似文献   

8.
Spherical (Y, Gd)BO3:Eu^3+ phosphor particles with a narrow size distribution(2 -4 μm) was obtained by firing the Y-Gd-Eu-BO3 precursor prepared in a W/O style emulsion system. In the W/O emulsion system, kerosene, used as oil phase, was mixed with Span 80 and Tween 80 compounds which were employed as the emulsifier with an HLB (hydrophile-lipophile balance) value of 5.2- 5.3. Both rare earths (Y, Gd and Eu) nitrate and boric acid solution or ammonia solution were used as aqueous phase. The synthesis conditions, such as emulsion composition, emulsifying style, precipitation reaction process, reaction temperature, morphology control, and so on, were investigated, and the optimum synthesis conditions for preparing spherical (Y, Gd)BO3:Eu^3+ phosphor was obtained. The phosphor was characterized by XRD, SEM, laser particle size analysis, emission and excitation spectrum under vacuum ultraviolet (VUV), and so on. The phosphor synthesized using the water-in-oil emulsion method with median diameter (D50) of 2 - 4 μm shows agreeable photoluminescence (PL) property and sphericity. The main emission peak appears at about 593 nm, which corresponds to ^5D0→^7F1 transition (magnetic-dipole transition) of the Eu^3+ ion. The cell parameters and powder diffraction data were indexed. The structure of the phosphor belongs to the hexagonal system with space group P63/m.  相似文献   

9.
The Y-Eu oxalate precursor was prepared with a homogeneous precipitation method. And the additives, Na2CO3, S, NaCl or their combination, were introduced into the precursor to prepare Y2O3 :Eu^3+ red phosphors at 1000 1300 ℃ for 2 h. The effect of molten salts on particle size and luminescent intensity was studied. The experimental results showed that the complex molten salt (Na:CO3 + S + NaCl) was conductive to enhance the luminescent intensity of Y2O3 :Eu^3+. The emission intensity of the phosphor prepared with these additives at 1300 ℃ was about 45% higher than that of the one prepared without molten salt, and about 11% higher than that of the corresponding commercial phosphor. Meanwhile, the particle size of Y2O3 :Eu^3+ phosphor was controlled effectively with the molten salt.  相似文献   

10.
We described the synthesis and luminescence of Ca1.5Y1.5Al3.5Si1.5O12:Ce3+ phosphor for light emitting diode (LED). The crystal-linity, morphology, structure, and luminescence spectra were examined by X-ray diffraction, field emission-scanning electron microscopy and photoluminescence spectroscopy. The results showed that Ca1.5Y1.5Al3.5Si1.5O12:Ce3+ phase was a dominating phase with little impurity phase peaks of Y2O3 when the sintered temperature reached to 1400 oC. Field emission scanning electron microscopy (FE-SEM) images showed the particle size of the phosphor was about 3 μm. Meanwhile, the excitation and emission spectra indicated that the as-prepared phosphors could be effectively excited by blue (460 nm) light and the excitation spectrum showed a broad band extending from 400-500 nm, while emission spectrum showed a broad yellow band peaking at 534 nm. The decay curve at the emission peak consisted of fast and slow components. The Ca1.5Y1.5Al3.5Si1.5O12:Ce3+ should be a promising yellow phosphor for near blue-based white-light-emitting diodes (LEDs).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号