首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
采用水平连铸直接复合成形工艺制备了断面尺寸为50 mm×30 mm×3 mm×R4 mm的铜包铝复合棒材,通过多道次平辊轧制和精整拉拔,制备了断面尺寸为60 mm×8 mm的铜包铝复合扁排,研究了合理的轧制工艺、扁排的力学和导电性能.结果表明:扁排的最终轧后宽度与侧边部开裂具有相关性,可通过轧制过程的压下量分配和轧制温度控制扁排宽度,从而防止边部开裂.合理的轧制温度为室温至200℃.在室温平辊轧制时,较为合理的轧制制度为5道次平辊轧制,第1道次压下率为20%左右,最大道次压下率为30%左右.轧后经1道次精整拉拔,可获得外形尺寸精确、表面质量良好的铜包铝复合扁排.经退火处理后,铜包铝复合扁排电阻率为2.084×10-8Ω·m,抗拉强度为122.7 MPa,延伸率为22.0%,界面剪切强度为25.9 MPa.   相似文献   

2.
建筑用高强钢应用广泛,生产流程相对较为成熟,但单道次压下率普遍不高.为寻求提高道次压下率是否可以成为工艺突破口,本文分别采用不同压下率对钢板进行轧制,对比分析了其力学性能.结果表明,小压下率钢板心部性能与边部性能差别较大,边部拉伸性能、冲击性能较好,心部较差,且大压下率钢板心部性能与边部性能差别较小,拉伸性能和冲击性能...  相似文献   

3.
通过对中厚板轧制过程中厚度方向变形的有限元计算,分析了不同压下率下的厚度方向变形特点,并对不同工艺参数对中厚板心部变形的影响进行了研究。计算结果表明,压下率变化显著影响钢板厚度方向上的变形分布,当压下率小于5%时,变形主要集中于表层,钢板内层变形较小,心部变形最小。当压下率大于5%小于25%时,金属内层变形最大,表层变形小于内层变形,心部变形更小。当压下率大于25%时,表层变形最大,其次是内层,最后是心部区域。合理的提高压下率对增大中厚板心部的压缩变形是最根本的,也是最有效的。本研究的意义在于,从轧钢工序提高中心变形,来改善中心质量缺陷问题,指导生产实践,制定合理的轧制工艺。  相似文献   

4.
舞钢通过真空焊接制坯+复合轧制技术,生产150 mm以上厚度、20 t以上单重复合钢板。在轧制过程中,发现单道次轧制压下率对复合板的复合层界面结合能力有显著影响。当单道次轧制压下率8%时,复合层结合能力弱,存在中线现象,按照ASTM A435/A435M标准探伤不合格;当有2个以上单道次轧制压下率在8%~15%时,复合层组织上存在较少的氧化物质点,结合层剪切强度在240 MPa附近;当有2个以上单道次轧制压下率15%时,复合层结合能力强,结合层剪切强度在350 MPa以上。  相似文献   

5.
朱叶  赵景存 《特殊钢》2021,42(1):11-15
利用Deform-3D软件对AISI4340钢Φ600 mm铸坯至300 mm×300 mm坯的开坯过程工艺参数进行了数值模拟。通过对加热温度、轧制速度、压下率、2道次压下对铸坯心部变形和材料流动影响的研究,分析了开坯成形过程中心部等效应力和材料变形特点,获得了Φ600圆连铸坯开坯成300 mm方坯的成形规律。结果表明:在1 070~1 140℃内,加热温度对心部的应变影响较小,变化幅度在2.3%左右。当轧制速度选1.0~2.0 m/s、总压下量一定的情况下,先大后小更利于心部缺陷的焊合。  相似文献   

6.
通过单道次模拟轧制试验,研究了不同压下率和形状比时坯料厚度中心的变形渗透规律,结果表明,随形状比增加,中心渗透变形率增大;试验条件下,当形状比达到0.7时,轧件中心渗透变形率已达到50%以上。在特厚板实际生产中,要根据轧机及原料条件尽量提高单道次轧制形状比,并在最少道次内保证将形状比提高到0.5以上。  相似文献   

7.
基于FEM(finite element method)研究了轧制预变形对AZ31B镁合金热轧板材边部损伤的影响规律。选用Normalized Cockcroft&Latham损伤模型,在轧制温度为400℃、轧制速度为0.5 m·s-1的条件下,对规格为50 mm×20 mm×15 mm的AZ31B镁合金板材预先使用凸度轧辊制备不同形状的板坯,使板坯中部的变形量一致,边部比中部分别高出2,4和6 mm,然后分别进行多道次、小压下率和单道次、大压下率平辊轧制模拟仿真。结果表明,轧制预变形能够显著降低镁合金板材边部的损伤,经多道次轧后板材边部的拉应力减小,应力三轴度降低,边部与中部的应变差值减小,边部金属与中部金属流动趋于同步,且在预设仿真方案范围内边部凸度越大,轧后板材边部的损伤值越小,最小损伤值为0.729。对镁合金板材预变形后可实现单道次、大压下率轧制,板材的边部温度和应变速率均有所增加,有利于降低轧制过程中的边部损伤。研究结果可为少或无边裂镁合金板材轧制工艺制定提供理论依据。  相似文献   

8.
采用DEFORM-3D三维大变形热力耦合弹塑性有限元软件对Ф21.5 mm GCr15轴承钢坯料在四架KOCKS轧机连轧成Φ16 mm棒材工艺过程进行了数值模拟。分析了棒材在KOCKS轧机孔型中轧制时的等效应力、等效应变、温度场以及轧制力等轧制工艺参数。结果表明,棒材在KOCKS机组中的变形主要发生在延伸孔型,精轧孔型的变形量较小,尤其在最后一道次;棒材在KOCKS机组中的宽展是不均匀,在靠近轧辊的区域宽展较小,在辊缝处宽展较大并产生鼓形;棒材在KOCKS机组中等效应变已达到芯部渗透,这对保证组织致密度和成品内部质量是非常有利的,现场各道次轧制力的实测值与模拟值的相对误差<2%。  相似文献   

9.
杨相歧  庄迎  李吉东  尹嵬 《特殊钢》2019,40(3):70-73
针对316不锈钢中厚板晶粒度控制问题在实验室进行了一系列的轧钢试验,分别对钢坯原始组织状态、总轧制压缩比、单道次变形率3个因素进行分析。试验结果表明,当轧制压缩比超过6时,钢坯原始组织状态对中厚板全厚度晶粒均匀性无明显影响;钢坯加热温度、道次压下量相同时,总压缩比为6生产工艺能够轧制出全厚度晶粒均匀的钢板;当轧制总压缩比为4时,单道次压下率超过30%时,钢板表面晶粒度为2级和7级混晶组织;单道次轧制变形量均小于10%时,即使轧制总压缩比足够大,钢板热轧态晶粒度依然不均匀。  相似文献   

10.
在两阶段控轧控冷工艺条件下,研究不同成分设计、夹杂物形态、晶粒尺寸及轧制规程对低合金钢Q345E低温冲击韧性的影响.结果表明:在不同成分设计和-40℃冲击试验温度条件下,含碳量0.12%时获得的冲击韧性好于含碳量0.16%时获得的冲击韧性;A类夹杂物控制在1.0 以下,冲击韧性得到明显改善;控轧控冷规程优化后,粗轧纵轧阶段单道次压下量32 mm,精轧阶段压下率≥10%,低温冲击韧性明显改善.  相似文献   

11.
刘靖  张艳  赵杰  席军良 《特殊钢》2008,29(6):15-16
为实现奥氏体再结晶控制轧制,根据石钢30 t转炉生产的GCr15轴承钢再结晶图,结合现场1 150~910℃14道次轧制Φ35 mm圆钢的工艺制度,通过Gleeble 1500热模拟试验机对GCr15连铸坯切取的试样进行1 150~910℃6道次的模拟试验。模拟试验结果表明,通过累计变形量82%,试样的再结晶率达91%,晶粒度为6级。若提高Φ530 mm轧机的实际轧制的压下量,使累计变形量由52%提高至60%,可使Φ35 mm GCr15轴承钢的晶粒进一步细化。  相似文献   

12.
低合金高强度钢Q345E(/%:0.12~0.15C,0.20~0.25Si,1.40~1.50Mn,≤0.010P,≤0.005S)的生产流程为80 t顶底复吹转炉-LF-RH-Φ450 mm铸坯CC-Φ110 mm棒材连轧工艺。工艺试验了压缩比(10.33~20.25)、开轧温度(1120~1 080℃)和冷却方式(0.2℃/s空冷和0.5℃/s风冷)对该钢-40℃,V-型缺口冲击韧性的影响。结果表明,随压缩比增加,开轧温度降低,冷却速度增加,该钢-40℃冲击功显著增加,采用压缩比16.74,开轧温度1100℃,0.5℃/s风冷工艺,Q345E钢组织细小、均匀,-40℃冲击功为40 J。  相似文献   

13.
HRB400高强度钢筋(%:0.19~0.25C、0.40~0.60Si、1.20~1.50Mn、≤0.040P、≤0.040S)由120 t转炉—钢包吹氩-120 mm×120 mm连铸工艺冶炼.为提高HRB400Φ12 ~22 mm热轧带肋钢筋的综合力学性能,冶炼时进行加5 kg/t钢MnSiN+0.4~0.9 k...  相似文献   

14.
西宁特钢精品小棒线在生产Ø75 mm的GCr15热轧圆钢时,发现轧后棒材内部存在中心疏松缺陷,导致棒材精整后超声探伤合格率低。通过修改孔型参数,结合数值模拟研究测试棒材芯部应力及等效应变的变化情况,再经现场生产验证,结合成品棒材超声探伤合格率的分析,来验证优化后的孔型参数是否可行,指导现场生产实践,提高轴承钢棒材的产品质量水平。参数的确定中,对各道次压下量的重新分配,主要是增加了第2道次的压下量,从58增加到86 mm,减小了第4道次的压下量,从58减小到30 mm。优化后的工艺直接从11架出Ø75 mm成品,节约了后2架轧机的能源消耗与轧辊磨损消耗。模拟结果显示第1道次的棒材内部应力由之前的拉应力变为压应力,结合轧制速度的降低,有利于提高棒材芯部质量。实际生产证明工艺优化后低倍质量显著提升,探伤合格率为96.37%,较之前提高3.63%。  相似文献   

15.
生产Φ50~75 mm的GCr15轴承钢时,轧后棒材存在中心疏松缺陷。通过数值模拟研究,观察棒材心部等效应变的渗透情况,并对粗轧孔型工艺进行优化,将优化前一二道次的压下量从21 mm、58 mm分别增加到51 mm、85 mm,第三道次的压下量从60 mm减小到34 mm。等效应变值随着道次的增加,呈逐渐增大趋势,棒材中的拉应力在经工艺优化后变为压应力,变形均匀度也得到提升,促进了铸坯心部的变形,有利于中心孔洞的压合。工艺优化后轴承钢的探伤合格率由原93.25%提高到96.06%。  相似文献   

16.
肖玉  洪慧平  冯富春 《特殊钢》2014,35(2):16-19
通过对棒材热连轧过程的分析,建立了20CrMnTi钢800~1150℃,变形量0~0.8,应变速率0~3 s-1的Hensel-Spittel流变应力模型;利用LARSTRAN/SHAPE有限元软件模拟了20CrMnTi从200 mm×200 mm的方坯经8道次连轧为Φ90 mm圆棒的过程,分析了轧件在圆弧侧壁的圆孔型和直线侧壁的圆孔型下轧制过程中的应力场、应变场、温度场和轧制力及力矩的变化情况。模拟结果表明,轧件圆角部位等效应力、等效应变较大且温度较低,容易出现轧制质量缺陷;圆弧侧壁的圆孔型轧制圆钢时的精度略高于直线侧壁的圆孔型。  相似文献   

17.
张迎晖  康永林  于浩  刘晓  方圆 《特殊钢》2005,26(6):32-34
用Gleeble-1500热/力模拟机研究了成分(%)为:0.20C-1.08Si-1.43Mn TRIP(相变诱导塑性)钢连续冷却时的组织,并测得动态CCT(连续冷却转变)曲线,得出冷却速度达10℃/s时出现粒状贝氏体,冷却速度15℃/s时得到板条贝氏体。在实验室模拟C-Si-Mn TRIP钢薄板坯连铸连轧工艺试验:用10 kg真空感应炉冶炼,成分(%)为:0.20C-1.54Si-1.55Mn的TRIP钢,钢锭尺寸为(mm):60×100×130,经7道次轧制成厚度6.40 mm板,终轧温度810℃,轧后空冷至700℃,再水冷至400℃模拟卷取。试验结果表明,该钢组织含有5.13%残余奥氏体,37.20%贝氏体,机械性能σb715 MPa,σs520 MPa,屈强比0.73,δ20%。  相似文献   

18.
针对轧钢厂GCr15轴承钢240 mm × 240 mm方坯粗轧阶段轧辊磨损较严重的情况,采用Archard磨损数学模型模拟分析了轧件压下量、轧辊硬度、热传导系数及摩擦因子在一道次成形后对轧辊磨损规律的影响。模拟结果表明,轧辊硬度越高,轧辊抗磨损能力越强;热传导系数对轧辊磨损的影响较小;当摩擦因子f>0.25时,其摩擦因子对轧辊磨损量变化明显;当轧件压下量在△h<50 mm 时,轧件压下量对轧辊的磨损量影响显著。根据所得结果,结合现场轧制工艺和轧辊材质,将使用的球墨铸铁Ⅰ轧辊[抗拉强度≥400 MPa,硬度HRC值40,热传导系数18 kW/(m2·℃),摩擦因子0.3]改成球墨铸铁Ⅱ轧辊[抗拉强度≥500 MPa,硬度HRC值45,热传导系数17kW,/(m2·℃),摩擦因子0.2],并将压下量由70 mm降至50 mm,使轧辊单槽过钢量由优化前10000 t提高至优化后的18000~20000 t。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号