首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
选用4种不同粒度的SiC分别与平均粒度为14 μm的SiC粉末混合,混炼后得到4种不同粉末装载量(体积分数)的喂料,采用粉末注射成形方法制备成SiC坯体,再无压熔渗Al~12%Si~8%Mg合金,获得高体积分数SiCp/Al复合材料,研究SiC粉末粒度及SiCp/Al复合材料中SiC的体积分数(即注射成形喂料中SiC粉...  相似文献   

2.
先用注射成形方法制备出SiC预成形坯,然后使用压力熔渗方法将熔融Al熔渗于预成形坯体得到含65%(体积分数)SiC颗粒的SiCp/Al复合材料的封装盒体.SEM分析结果表明,封装盒体中的Al熔渗完全,内部组织均匀,且基本达到完全致密化;XRD分析结果得出,压力熔渗SiCP/Al复合材料中有微量的Al4C3生成,少量Al4C3有利于促进复合材料的导热性能;对于高体积分数SiCP/Al复合材料,界面热阻对材料热导率的影响不可忽略,使用等效粒径和Hasselman-Johnson模型计算本试验制备的SiCP/Al复合材料的界面热阻约为4.68×10-8m2·W/K.  相似文献   

3.
选择不同粒径的6061Al粉末和SiC颗粒,采用真空热压法制备含35%SiC体积分数的SiCp/6061Al复合材料,研究不同级配比对复合材料显微组织和抗拉强度的影响。结果表明:复合粉末的粒径级配比可影响复合材料的微观组织和力学性能;当增强体颗粒粒径为15μm时,随基体6061粉末与SiC颗粒粒径比降低,SiC颗粒在复合材料中的分布越来越均匀,抗拉强度提高;当基体6061Al粒径为10μm时,随SiC颗粒粒径减小,复合材料微观组织的均匀性降低,但抗拉强度提高。并建立了理想的复合粉末颗粒分布模型,模型的理论计算结果与Slipenyuk公式计算结果接近。  相似文献   

4.
本文采用无压浸渗法制备高体份铝基复合材料,实验结果表明:55%SiCp/Al复合材料的最佳固溶温度为530℃,此时,强化相■最容易析出。SiC颗粒的加入使SiCp/Al复合材料时效硬化过程滞后于基体合金,且硬度峰比较尖锐。  相似文献   

5.
高体积分数金刚石颗粒增强Cu基复合材料由于硬度高导致其难以加工成形。采用粉末注射成形制备多孔金刚石预成形坯和Cu熔渗相结合的工艺可以实现金刚石/Cu的近净成形。本文对经过表面镀铬再镀铜的金刚石粉末注射成形涉及的关键工艺,包括粘结剂的选择、注射成形工艺过程、烧结工艺等进行研究。结果表明,采用成分为70%石蜡+25%高密度聚乙烯+5%硬脂酸的粘结剂作为金刚石粉末注射成形的载体时,喂料具备优异的综合流变性能,同时可以获得较高的固相体积分数。采用上述配方的粘结剂,最佳的注射温度为165~175℃,注射压力为80~90 MPa。脱脂金刚石预制坯最佳的烧结条件为:烧结温度1 050℃,保温时间25 min,此时坯体的强度达到10 MPa,孔隙基本全部为开孔隙。  相似文献   

6.
采用真空热压烧结工艺制备Al-30Si合金、30%Sip/Al、30%SiCp/2024Al、30%SiCp/6061Al(均为体积分数)复合材料,测定其热膨胀系数及力学性能。利用扫描电镜(SEM)、能谱仪(EDS)对其微观组织结构及断口形貌进行表征,探究了高硅铝合金及颗粒增强铝基复合材料的组织与性能,分析了材料的断裂机制。结果表明:SiCp/2024Al复合材料中SiC颗粒分布均匀,组织致密,综合性能好,热膨胀系数(CTE)为13.69×10-6/K,硬度达到134 HB,极限抗拉强度达353 MPa。SiCp/6061Al复合材料中SiC颗粒分布较均匀,界面结合较好,组织不够致密,有少许孔隙,性能较好。SiCp/6061Al和SiCp/2024Al复合材料的断裂方式都是界面基体的撕裂结合SiC颗粒的断裂。Sip/Al复合材料中Si颗粒分布较均匀,断裂方式为界面脱开,性能较差。Al-30Si合金在烧结过程中形成大量板条状的Si相,性能最差,断裂方式以合金撕裂为主。  相似文献   

7.
采用伪半固态触变成形工艺制备了40%、56%和63%三种不同SiC体积分数颗粒增强Al基电子封装材料,并借助光学显微镜和扫描电镜分析了材料中Al和SiC的形态分布及其断口形貌,测定了材料的密度、致密度、热导率、热膨胀系数、抗压强度和抗弯强度.结果表明,通过伪半固态触变成形工艺可制备出的不同SiC体积分数Al基电子封装材料,其致密度高,热膨胀系数可控,材料中Al基体相互连接构成网状,SiC颗粒均匀镶嵌分布于Al基体中.随着SiC颗粒体积分数的增加,电子封装材料密度和室温下的热导率稍有增加,热膨胀系数逐渐减小,室温下的抗压强度和抗弯强度逐渐增加.SiC/Al电子封装材料的断裂方式为SiC的脆性断裂,同时伴随着Al基体的韧性断裂.   相似文献   

8.
采用真空-压力熔渗工艺制备了B4C/Al金属陶瓷复合材料.由于真空-压力熔渗工艺可以在较低的熔渗温度(低于1100℃)下制备B4C/Al复合材料,避免了高温下B4C与金属Al反应产生其它脆性中间相,可以制备材料相对密度>98%,抗弯强度为360~420 MPa,断裂韧度为10~11 MPa·m1/2的高性能B4C/Al金属陶瓷复合材料.  相似文献   

9.
为了研究不同粒径的Si C体积配比对SiC_p/Al基复合材料显微组织及拉伸性能的影响,采用高压扭转法(High-pressure torsion,HPT)将3.5μm(小)、7.0μm(大)SiC颗粒体积比分别为4∶1、1∶1、1∶4的SiC颗粒和纯Al粉末混合物制备成10%SiC_p/Al基复合材料(体积分数)。用金相显微镜、万能试验机、扫描电镜等分析2种粒径的Si C体积比对SiC_p/Al基复合材料显微组织和拉伸性能的影响。结果表明,随扭转半径增大,各试样的SiC颗粒分布更加均匀,颗粒团聚、偏聚现象减少,其中小、大SiC颗粒体积比为1∶1的试样性能最优,伸长率、相对密度最高,分别达到14.3%和99.1%,拉伸断裂形式为塑性断裂。  相似文献   

10.
通过机械合金化制备Fe-48at%Al金属间化合物粉末,分别按照33%、40%和50%的粉末装载量(体积分数)进行注射成形,成形坯经溶剂脱脂和热脱脂以及1 200℃真空烧结,得到FeAl金属间化合物.重点研究粉末装载量对喂料混炼、注射成形温度及压力、脱脂率及烧结组织和力学性能的影响.结果表明,机械合金化FeAl粉末由于具有不规则形状和层片结构,其注射成形喂料流动性较差;在使用高粉末装载量时应提高注射温度和压力,且溶剂脱脂率较低(7 h后为94.3%),需进一步延长脱脂时间;FeAl金属间化合物烧结试样的相对密度和抗弯强度均随粉末装载量增大而提高,当粉末装载最为50%,注射温度和注射压力分别为154℃和4.0 MPa时,材料的相对密度为92%,抗弯强度达587 MPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号