首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
为提高本钢南芬选矿厂大选系统处理北山过渡类型矿的回收率,减少金属流失,对南芬选矿厂大选车间处理北山过渡类型矿的尾矿进行了再选选矿试验研究,采用中磁—强磁预富集—再磨—弱磁得精—强磁精矿阴离子反浮选工艺,可获得铁精矿品位为57.94%、铁回收率为59.70%(其中弱磁精矿品位66.84%,回收率39.83%)的选别指标,说明北山尾矿中流失了相当比例的磁铁矿,有必要对现场工艺流程进行技术改造。  相似文献   

2.
刘文胜  韩跃新  姚强  高鹏  刘杰 《金属矿山》2022,51(2):139-145
为解决鞍千矿业有限责任公司现行阶段磨矿—粗细分级—重磁浮联合分选工艺中重选精矿品位低、波 动大,浮选尾矿品位高、选别工艺流程长等难题,以鞍千现场半自磨粗粒湿式强磁预选精矿为研究对象,开展搅拌磨 矿—弱磁—强磁—反浮选短流程工艺优化试验研究,以期实现鞍千铁矿石的高效开发与利用。 结果表明,鞍千现场 半自磨—粗粒湿式强磁预选精矿在搅拌磨磨矿细度-0. 038 mm 占 80%条件下,经磁场强度 79. 58 kA / m 弱磁选,弱磁 尾矿经背景磁感应强度 700 mT 强磁选,强磁精矿以淀粉为抑制剂、CaO 为调整剂、TD-Ⅱ为捕收剂经 1 粗 1 精 3 扫反 浮选,反浮选精矿与弱磁选精矿合并为综合精矿,综合精矿铁品位为 68. 04%、回收率为 91. 78%,综合尾矿铁品位 8. 62%。 搅拌磨矿—弱磁—强磁—反浮选短流程充分利用铁矿磁性差异进行分选,实现了鞍千铁矿石的分质分选和 脉石的梯级抛除,对于鞍山式赤铁矿石经济高效开发利用具有重要的指导意义。  相似文献   

3.
针对海南某铁矿山不断开采、矿石品质下降的问题,提出采用铁矿石分质分选的新思路,开展了弱磁选富集磁铁矿、反浮选回收赤铁矿的工艺流程试验。结果表明:原矿经过磨矿(-0.074mm占54.21%)—一段弱磁选(79.58k A/m)—弱磁精矿再磨(-0.045mm占63.82%)—二段弱磁选(79.58k A/m)获得铁品位62.42%、回收率19.28%的弱磁精矿,对一段弱磁尾矿经强磁选获得的强磁精矿与二段弱磁尾矿合并为混磁精矿,混磁精矿再磨至-0.045mm占85.52%,以淀粉为抑制剂、Ca Cl2为调整剂、Ts-2为捕收剂,经1粗1精3扫闭路反浮选,获得铁品位60.60%、回收率36.23%的浮选精矿。弱磁精矿和浮选精矿中铁矿物分别主要以磁铁矿和赤铁矿形式存在,主要脉石矿物皆为石英。  相似文献   

4.
胡义明  刘军  张永 《金属矿山》2009,39(6):49-51
包钢选矿厂现行反浮选工艺流程对白云鄂博氧化矿强磁选精矿的选别效果较差,使白云鄂博氧化矿的精矿质量受到影响。为此,对白云鄂博氧化矿强磁选精矿进行了单一反浮选方案、反浮选-正浮选方案及正浮选-反浮选方案的试验比较。根据比较结果,采用反浮选-正浮选方案进行闭路流程试验,取得了精矿铁品位为59.32%,铁回收率为64.52%的较好选别指标。  相似文献   

5.
对陕西某选矿厂选铁尾矿进行了回收钛铁矿的实验研究。选铁尾矿经弱磁-强磁-磨矿-强磁工艺所得的精矿, 再经浮选回收钛铁矿。以H2SO4为调整剂, 草酸为抑制剂, FAT-3为钛铁矿捕收剂, 采用1粗5精浮选工艺流程, 最终获得了精矿TiO2品位47.13%、回收率74.96%的试验指标, 实现了尾矿中钛铁矿的回收。  相似文献   

6.
田华伟  刘军 《现代矿业》2013,29(7):101-104
针对某磁、赤铁矿选矿厂铁精矿品位特别是浮选精矿铁品位、铁回收率低的难题,对其现有阶段磨矿-弱磁-细筛提质-强磁-反浮选流程进行了优化选矿试验研究。试验结果表明:现场因为入选磨矿粒度不够,导致强磁精矿和入浮矿品位偏低,是选别指标差的主要原因,试验最终获得了精矿铁品位为65.19%、回收率为74.74%的良好选别指标。  相似文献   

7.
俄罗斯米哈伊洛夫斯克采选公司处理赤铁矿-磁铁矿铁荚岩矿石.现有的选矿工艺流程包括4段破碎,干式磁选、4段球磨和5段湿式弱磁选.在选矿厂设计中规定对湿式弱磁选尾矿再磨后用阴离子捕收荆浮选从其中回收赤铁矿.设计获得的赤铁矿浮选精矿铁品位为58.4%.但选矿厂只生产磁铁矿精矿,其中铁回收率仅为57%.选矿厂尾矿铁品位为26%~28%.本工作提出采用强磁选-浮选和浮选-强磁选方案从选矿厂弱磁选尾矿中回收赤铁矿精矿.扩大试验结果表明,这两个流程均可获得铁品位为62.7%~61.5%,对原矿铁回收率为8%~9%的赤铁矿精矿.  相似文献   

8.
针对内蒙某磁矿系列弱磁尾矿中含有大量的铌,但铌品位低、性质复杂、嵌布粒度细的特点,通过矿石性质分析和大量的选矿试验研究,确定了稀土浮选—混合浮选—强磁选—正浮选铁—正浮选铌—强磁选的工艺流程,最终得到了Nb2O5品位为4.54%、回收率为20.82%的合格铌精矿。  相似文献   

9.
谢金球  张鉴  白永兰 《矿冶》2000,9(3):29-33,23
分析了包钢选矿厂氧化矿弱磁—强磁—反浮选工艺流程现状 ,指出了工艺中存在的不足之处 ,提出了改善磨矿、磁选工艺参数的建议 ;并探讨了从尾矿中回收铁和稀土矿物的可行性。仅从尾矿中充分回收磁铁矿 ,铁选矿回收率即可提高 1 2 9个百分点  相似文献   

10.
首先对包钢选矿厂磁选铁精矿反浮选尾矿进行了弱磁选选铁磨矿细度试验和浮稀土粗选药剂用量试验,然后对试样进行了全流程试验。试验结果表明,采用3段阶段磨矿-弱磁选选铁、1粗3精浮选选稀土、第3段精选稀土的尾矿返回精选2流程处理现场反浮选尾矿,最终获得了REO品位为58.12%、REO回收率为64.74%、含铁5.70%的稀土精矿和铁品位为64.47%、铁回收率为56.51%、稀土REO品位为1.65%的铁精矿。  相似文献   

11.
摘要:攀钢密地选矿厂阶磨阶选流程改造后,产品的物料特性发生了变化,尾矿品位较改造前有所增加。选铁尾矿中品位TFe16.16%, TiO211.03%,尾矿中铁品位偏高,有必要进行降低尾矿中的铁品位的试验研究。研究结果表明,采用弱磁选可获得产率为5.02%,品位为TFe57.24%,回收率为17.78%的铁精矿;采用弱磁选—强磁选—浮选工艺流程,可获得产率为10.41%,TiO2品位为47.15%,回收率为44.49%的钛精矿。将所有尾矿混合,其混合尾矿降低至TFe11.42%, TiO25.97%,研究结果对密地选矿厂的流程改造有一定的参考作用。   相似文献   

12.
对包钢选矿厂强磁选粗精矿经磁化焙烧-弱磁选所得尾矿进行稀土的选矿工艺研究。试验结果表明,弱磁选尾矿经预先脱碳并经混合浮选后得到的混合浮选精矿,对其进行了单一流程及一次粗选、三次精选、一次扫选的全流程试验研究,最终获得了REO品位64.41%,回收率18.13%的稀土精矿产品。同时,对试验流程的改进和优化提出了建议。  相似文献   

13.
某选铜尾矿中伴生钙铁石榴石,比较了弱磁-强磁联合试验、重选(摇床)-磁选联合试验工艺流程,后者效果较好,可获得纯度为98%、回收率为90%的钙铁石榴石精矿及含TFe、S分别为68.0%、2.28%的铁精矿(含硫较高),为其工业利用、企业效益最大化奠定了基础.  相似文献   

14.
永平铜矿万吨级选矿厂铜硫浮选最终尾矿经螺旋溜槽预选抛去大量的脉石 ,可得到含铜、硫、钨的粗精矿 ,以及含石榴子石的中矿 ,处理该中矿 ,采用磁选方案获得含石榴子石 96.3 %、回收率 69.3 %的精矿 ,采用重选摇床方案获得含石榴子石 95 .4%、回收率 60 .5 9%的精矿。  相似文献   

15.
用旋流-静态微泡浮选柱反浮选磁选铁精矿   总被引:1,自引:0,他引:1  
用旋流-静态微泡浮选柱和浮选机对某铁矿选厂含铁42.00%的低品位混合磁选铁精矿进行了提高精矿品位的反浮选对比小型试验,结果表明,同样是1次粗选,浮选柱精矿品位达67%左右,比浮选机高约3个百分点,但尾矿品位也较高。为此,对浮选柱进行了增设脉动磁系和稳流管的改进。改进后的浮选柱不仅保持了精矿品位高的优势,而且尾矿品位大幅度降低,1次粗选可使精矿品位达到67.85%,回收率为79.22%,而浮选机需经过一粗一精一扫3次选别才能获得与此相近的指标。  相似文献   

16.
山东某铁矿选矿试验   总被引:1,自引:0,他引:1  
山东某低铁高硅含硫铁矿石中各矿物嵌布粒度差异较大,磁铁矿、赤褐铁矿含量相当,赤褐铁矿与石英嵌布关系较复杂,属典型的难选铁矿石。试验研究表明,磨矿-脱硫浮选-弱磁选-弱磁尾再磨-强磁选-强磁精矿脱硅反浮选流程是处理该矿石的高效流程,最终获得了铁品位为65.26%、含硫0.18%、含SiO2 5.41%、铁回收率为82.99%的铁精矿,以及含硫25.56%、硫回收率为68.89%的硫精矿。  相似文献   

17.
根据印尼某低品位铁矿石的特性,采用预选抛尾—磨矿—弱磁选工艺流程对该矿进行了选铁实验室试验研究。结果表明,原矿破碎至-3mm采用湿式弱磁预选,可抛弃产率73.58%的废石,提高入磨铁矿石TFe品位至32.47%,其中磁性铁的损失仅为2.14%左右,磁性产品磨矿至-200目75%后经弱磁选铁,最终可获得产率13.31%,TFe品位57.44%、回收率63.41%,含V2O50.54%、TiO29.16%的铁精矿。  相似文献   

18.
新疆某铜镍尾矿中尚含有0.2%左右的镍、0.1%左右的铜,同时还含有17%左右的铁和3%左右的硫。镍主要以镍黄铁矿形式存在,铜主要以黄铜矿形式存在,铁主要以磁铁矿形式存在,硫主要以磁黄铁矿和黄铁矿形式存在。为了给该尾矿中这些有价成分的综合回收提供依据,对该尾矿进行了再选试验。结果表明:采用铜镍浮选-硫浮选-铁磁选-磁选精矿再浮选脱硫的工艺流程,并在铜镍粗选时采用旋流喷射浮选柱、在铜镍精选前和磁选精矿脱硫前采用再磨手段,最终可获得铜、镍品位分别为1.21%和2.72%,铜、镍回收率分别为12.30%和16.59%的铜镍混合精矿,以及铁品位为65.12%、铁回收率为26.96%的铁精矿和硫品位为35.73%、硫回收率为87.54%的硫精矿。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号