首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用20 L钢制近球形爆炸特性测试系统,对低浓度瓦斯参与条件下、3种不同煤尘的爆炸下限变化规律进行了试验研究。研究发现:在本试验条件下,煤尘的爆炸下限浓度随瓦斯浓度的增加而逐渐下降;当瓦斯浓度在0~1.0%范围内,煤质组成成分对爆炸下限影响较大,相应的瓦斯和煤尘共存的爆炸复合体系表现为"强煤尘"性;当瓦斯浓度大于1%时,煤尘爆炸下限浓度的数值差异不大,煤质成分对煤尘爆炸下限的影响不再明显,相应的瓦斯煤尘共存的复合爆炸体系表现为"强瓦斯"性。  相似文献   

2.
采用20 L钢制近球形爆炸特性测试系统,对低浓度瓦斯参与条件下、3种不同煤尘的爆炸下限变化规律进行了试验研究。研究发现:在本试验条件下,煤尘的爆炸下限浓度随瓦斯浓度的增加而逐渐下降;当瓦斯浓度在0~1.0%范围内,煤质组成成分对爆炸下限影响较大,相应的瓦斯和煤尘共存的爆炸复合体系表现为"强煤尘"性;当瓦斯浓度大于1%时,煤尘爆炸下限浓度的数值差异不大,煤质成分对煤尘爆炸下限的影响不再明显,相应的瓦斯煤尘共存的复合爆炸体系表现为"强瓦斯"性。  相似文献   

3.
瓦斯和煤尘复合爆炸是煤矿井下爆炸灾害的主要形式之一,研究瓦斯/煤尘复合爆炸下限变化规律,是有效防治煤矿爆炸灾害的必备条件。为研究煤尘组分对瓦斯/煤尘复合爆炸下限的影响,特选用2种组分不同的煤尘(烟煤和无烟煤)。依据EN 14034标准,使用10 kJ化学点火头在标准20L球形爆炸容器中,分别对2种煤尘的最小爆炸浓度、相同试验条件下的瓦斯爆炸下限以及煤尘与瓦斯的复合爆炸下限进行了测量。试验测得烟煤和无烟煤的最小爆炸浓度分别为50 g/m^3和70 g/m^3,瓦斯爆炸下限为4%。当煤尘中分别通入1%、2%、3%、4%的瓦斯后,烟煤最小爆炸浓度分别降低至40、20、5、0 g/m^3,无烟煤最小爆炸浓度分别降低至50、20、5、0 g/m^3。基于上述测量结果,对比分析了煤尘组分对瓦斯/煤尘复合爆炸下限变化规律的影响,并探讨了Le Chatelier、Bartknecht、Jiang等气粉复合爆炸下限预测模型对瓦斯/煤尘复合体系的适用性。结果表明:2种煤尘的最小爆炸浓度均随瓦斯浓度的增大而降低,但挥发分含量低的煤尘降幅更大,即瓦斯对低挥发分煤尘最小爆炸浓度的影响更为显著。Jiang模型预测值远远偏离实际测量值;Le Chatelier模型预测值高于实际测量值,且误差随瓦斯浓度的增大而增大;Bartknecht模型适用性相对较好,且更适用于低挥发分瓦斯/煤尘复合体系。  相似文献   

4.
煤尘云的爆炸下限浓度是表征煤尘的爆炸性质的一个重要技术参数,井下防止煤尘爆炸的管理工作常需要参考应用.我们在实验室条件下开展了这项研究工作.为取得正确的实验结果,经过反复多次的试验和改进,建立一套能够制造均匀煤尘云而操作比较方便的实验装置.利用这套装置,初步测量了几种类型煤的煤尘云爆炸下限浓度值,对煤尘的粒度、甲烷以及岩粉等对爆炸下限浓度的影响也做了典型的考察.  相似文献   

5.
为揭示管道内甲烷-煤尘预混湍流特征及爆炸火焰传播过程,构建了竖直管道内甲烷-煤尘预混扩散及爆炸物理数学模型;基于流体力学及传热-传质理论,对管道内甲烷-煤尘扩散特征和爆炸过程进行了数值模拟。划分了管道内气固两相扩散特征阶段,分析了初始真空度和进气压力对扩散湍流强度的影响规律;研究了煤尘粒径、浓度及甲烷浓度对爆炸最大压力及最大爆炸压力上升速率的影响特征;揭示了管道内甲烷-煤尘预混爆炸过程中火焰传播特征及爆炸机制。结果表明:煤尘颗粒在竖直管道罐内扩散可分为快速注入、减速分散、稳定和沉降4个连续阶段,初始真空度及进气压力对湍流强度均有影响;爆炸过程中,不同时刻下管道整体爆炸压力场基本均匀分布。甲烷浓度、煤尘浓度及粒径与最大爆炸压力P_(max)及最大爆炸压力上升速率(dP/dt)_(max)均呈现二次函数关系;不同时刻下爆炸火焰结构及火焰高度、火焰传播速度的模拟与试验结果具有较好的一致性,火焰结构呈现"月牙-S-下凹月牙-指尖"传播至爆炸结束。温度分布不均,高温区集中在管道上部和中下部。火焰传播速度先增大后减小,后期呈现震荡性特征。  相似文献   

6.
采用20L近球形爆炸特性测试系统对瓦斯、煤尘共存条件下爆炸极限变化规律进行了实验研究。研究发现:在本实验条件下,煤尘的爆炸下限浓度随瓦斯浓度的增加而逐渐下降,纯煤尘时的爆炸下限浓度是28.4g/m3,当加入1.70%浓度瓦斯时,煤尘爆炸下限浓度下降到7.8g/m3,且煤尘爆炸下限与瓦斯浓度呈指数函数关系变化;瓦斯的爆炸极限随煤尘浓度的增加发生改变,且与煤尘浓度呈不同的指数函数关系;纯瓦斯的爆炸上限为15.8%,而加入100g/m3的煤尘后瓦斯的爆炸上限下降到了12.8%;瓦斯的爆炸下限随煤尘浓度的增加逐渐下降,纯瓦斯的爆炸下限为5.10%,而加入100g/m3的煤尘后瓦斯的爆炸下限下降到了3.1%。研究结果为煤矿井下瓦斯煤尘爆炸事故的防治提供理论依据。  相似文献   

7.
<正> 一、前言迄今为止关于煤尘爆炸的研究报告,主要依据条件为:1.煤尘云的浓度均一;2.不考虑煤尘云的流动情况;3.同一煤尘试料的爆炸特性,在试验期间没有变化。但笔者根据煤尘爆炸火焰传播情况,进行了一系列试验认为,按照上述并不能充分说明煤尘爆炸火焰的传播现象。关于煤尘云的浓度均一问题,在井下各处煤尘均匀堆积的情况很少,一般是,靠近  相似文献   

8.
基于20 L球形爆炸装置的煤尘爆炸特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用标准的20 L爆炸球实验装置,研究了3种不同煤质的煤尘及瓦斯煤尘混合物的爆炸特性,获得了不同实验条件下煤尘的爆炸特征参数,并给出了定量评价。研究结果显示:不同煤质特性煤尘的爆炸特性存在显著差异,在实验选定的粉尘浓度范围内,煤尘的爆炸超压及超压的上升速率随粉尘浓度基本呈先增加后降低的变化趋势;随着爆炸环境初始压力的增加,显著延长了煤尘析出的可燃性挥发分气体的火焰发展期,使得煤尘的爆炸参数随初始压力均呈现升高的变化规律;煤尘的爆炸特性随混合物中瓦斯气体的含量呈先增加后降低的趋势,初始少量瓦斯气体的加入显著改善与提高了瓦斯煤尘混合物的爆炸特性,降低了瓦斯煤尘混合物的爆炸下限。采用图像处理的方法对煤尘爆炸产物颗粒表面的结构特性进行了半定量分析,获得了产物颗粒表面的孔隙形状因子及其分布。  相似文献   

9.
为了进一步探究不同煤种参与的瓦斯煤尘爆炸的传播规律,选取3种具有代表性的煤尘在自制的半封闭管道内进行试验,主要研究了瓦斯煤尘爆炸火焰传播速度、火焰面发光强度和最大爆炸压力。研究结果表明:瓦斯煤尘爆炸的最大爆炸压力和火焰传播速度皆随着煤尘浓度的增加呈先上升后下降的趋势;存在着一个最佳的瓦斯浓度和煤尘浓度,使火焰传播速度达到最大,发光强度也达到最大;火焰传播速度、最大爆炸压力和爆炸产生的发光强度都是按褐煤、烟煤、无烟煤依次降低。  相似文献   

10.
甲烷-煤尘复合爆炸威力实验   总被引:4,自引:0,他引:4       下载免费PDF全文
毕明树  王洪雨 《煤炭学报》2008,33(7):784-788
建立了由压力变送器、数据采集卡、计算机和电极点火装置组成的密闭空间甲烷-煤尘复合爆炸实验系统,动态响应时间小于1 ms,测试精度为0.5级.对甲烷-煤尘复合爆炸威力进行了系统的实验研究.结果表明:密闭空间内甲烷-煤尘复合爆炸的最危险爆炸条件为甲烷浓度5%,煤尘浓度500 g/m3,煤尘粒径26 μm,点火延迟时间40 ms;最大爆炸压力与甲烷浓度、煤尘浓度和点火延迟时间呈二次函数关系;最大爆炸压力随着煤尘粒径的增大而减小.甲烷的存在使得纯煤尘在空气中的爆炸下限降低,而爆炸压力增大;同样,煤尘的存在使得甲烷的爆炸下限降低,而爆炸压力升高.  相似文献   

11.
粘尘棒作为一种高效的煤层注水添加剂,不但能够有效地提高煤尘的降尘率,而且可使煤体产生的煤尘爆炸下限浓度升高,煤尘爆炸性减弱,具有综合防尘减灾的作用,对煤矿的安全生产具有重要的意义。煤尘爆炸下限浓度是煤尘爆炸特性的一个重要参数,论文利用Hartman装置通过对不同含水量下水与粘尘棒对煤尘爆炸下限浓度的对比试验研究,分析了添加粘尘棒煤层注水后对煤尘的爆炸下限浓度的影响及原因。  相似文献   

12.
瓦斯煤尘爆炸事故是煤矿灾害事故之一,为了预防和控制井下此类事故的发生,国内外研究者采用理论分析、实验研究和数值模拟等手段对瓦斯煤尘着火特性、瓦斯煤尘复合火焰传播规律及瓦斯爆炸诱导沉积煤尘参与爆炸等进行了深入的大量的研究,本文对该研究方向上的国内外研究成果进行了综合评述,并展望了瓦斯煤尘爆炸未来科研方向上的关注点。  相似文献   

13.
《煤矿安全》2006,37(6):68-68
研究证明,大多数煤尘的挥发分含量〉20%,有的煤尘在从14%到20%之间。挥发分〈14%的煤尘尚未发现能爆炸,当空气中CH4浓度从4.9%到15.4%易发生爆炸。最易燃烧的浓度是8%,当浓度在9.5%时爆炸力量最大。温度增高使甲烷空气混合体的可爆炸性下限降低,当温度400℃时,其可爆性限度等于3%。煤尘含量从5%增加到30g/m^3使可爆性下限降低到3%~0.5%。这时,与CH4空气混合体相比较,煤尘瓦斯混含体的燃烧能量增大许多倍。CH4燃烧温度为700~800℃,当与热原体接触时,CH4不能立刻燃烧,而是延迟一段时间。当燃烧温度650℃时,延迟时间为10S,当温度1000℃时为1s。这个延迟时间称之为感应期。与甲烷爆炸相比较,煤尘爆炸有一系列特点。由于氧化反应发生气体产物,使煤尘爆炸。由于煤尘互相间摩擦,使煤尘云充电,产生火花放电,这样使煤尘燃烧。当煤尘爆炸时,产生很多CO,这时像甲烷爆炸一样一主要是CO2和其他一些气体。煤尘燃烧温度为700~800℃。1kg煤尘燃烧约产生34MJ的热量。煤尘爆炸的颗粒都小于100um。甲烷燃烧温度为700~800℃,当0℃时燃烧热量为55.6MJ/kg。当空气中存在CH4时,煤尘的可爆性程度增大。当浓度300~400g/m^3时,煤尘爆炸力量最大。  相似文献   

14.
煤尘对低浓度瓦斯爆炸的影响研究   总被引:2,自引:2,他引:2  
通过实验室试验研究揭示了瓦斯煤尘爆炸下限浓度的相互影响关系。实验表明,瓦斯参与情况下煤尘的爆炸下限浓度明显降低,同样煤尘参与情况下甚至1%的瓦斯也会发生爆炸。  相似文献   

15.
挥发分是煤尘受热时析出的成分,是影响煤尘云最低着火温度的主要因素之一。利用煤尘云最低着火温度测定系统对7种不同挥发分煤样的煤尘云最低着火温度进行了测定。主要得到如下结论:挥发分不同的煤尘云在最佳着火情况下的火焰状态不尽相同,但并不能单纯根据挥发分的大小对着火火焰类型进行分类;随着喷尘压力的增加,煤尘云最低着火温度先降低后升高;随着煤尘质量的增加,煤尘云最低着火温度也呈现先降低后升高的现象;煤尘云最低着火温度随挥发分的增大总体呈下降趋势。  相似文献   

16.
挥发分是煤尘受热时析出的成分,是影响煤尘云最低着火温度的主要因素之一。利用煤尘云最低着火温度测定系统对7种不同挥发分煤样的煤尘云最低着火温度进行了测定。主要得到如下结论:挥发分不同的煤尘云在最佳着火情况下的火焰状态不尽相同,但并不能单纯根据挥发分的大小对着火火焰类型进行分类;随着喷尘压力的增加,煤尘云最低着火温度先降低后升高;随着煤尘质量的增加,煤尘云最低着火温度也呈现先降低后升高的现象;煤尘云最低着火温度随挥发分的增大总体呈下降趋势。  相似文献   

17.
半密闭空间内煤尘云爆炸火焰传播过程及传播机制更为复杂,影响因素众多,爆炸过程中存在火焰、湍流与压力的相互耦合作用。为揭示开放管道内煤尘云形成机制及爆炸火焰行为动态演化特征,基于计算流体力学、燃烧学及数值传热学等理论,以开口的哈特曼管道为对象,分别对管道内煤尘扩散特征和爆炸过程进行模拟分析。基于物理实验验证及数值模拟研究,分析了煤尘在开口管道内的分散、悬浮及沉降特征,获取了粉尘扩散过程中流场的时空演化特征,得到了煤尘云爆炸过程中的温度变化规律,获取了爆炸过程中火焰动态行为及火焰高度、火焰速度的变化规律,研究了煤粉粒径及点火延时对火焰高度及火焰速度的影响规律,揭示了开放管道内煤粉云爆炸火焰传播的动力学机制。结果表明:(1)煤尘颗粒经过快速注入、减速分散、自由扩散和沉降阶段并最终形成粉尘云;(2)在爆炸的不同阶段,影响火焰形态的因素不同;整个爆炸过程中,火焰阵面演化趋势为:"非球形—飞火及点状火—蘑菇状";(3)随着爆炸的发展,火焰高度呈现Logistic函数特征,火焰速度呈现先迅速增大后缓慢减小;(4)湍流对均相燃烧及非均相燃烧的耦合影响造成了火焰锋面的不稳定性,火焰阵面热气流对管道口外侧冷气流的卷吸是形成"蘑菇状"火焰的主要原因。  相似文献   

18.
为予防煤尘爆炸,生产矿井必须经常注意清除堆积煤尘、消除火源,同时为制止予料不到的煤尘爆炸传播,需要布设岩粉棚、水棚、浓度岩粉地带及水喷雾地巷等这些所谓予防爆炸传播的设置.上述的这种基本设置,还有个爆炸火焰温度问题.如判断水棚、水袋制止传播然烧的效果时,为使飞散水滴吸收火焰热量的机能卓有成效,以火焰产生的总热量、火焰温度具有的程度作为计算基础.  相似文献   

19.
煤尘爆炸是煤矿主要自然灾害之一,这类事故死亡人数多,破坏性严重。煤尘爆炸可放出大量热能,爆炸火焰温度高达1600~1900℃,使人员和设备受到严重损失。尤其是煤尘爆炸气体中有大量的CO2和CO,这是造成人员死亡的主要原因。1942年,本溪煤矿发生一起煤尘爆炸事故,死亡1549人,致残246人。煤尘爆炸必须同时具备以下三个条件:一是煤尘本身具有爆炸性。煤尘本身有无爆炸性,要通过由井下采取煤样,经煤尘爆炸性鉴定后确定;二是煤尘在空气中呈悬浮状态,并达到一定的浓度(在爆炸下限至上限浓度范围内)遇明火才有爆炸的可能性;三是弓…  相似文献   

20.
瓦斯爆炸诱导沉积煤尘参与爆炸作用模式   总被引:5,自引:2,他引:5       下载免费PDF全文
刘丹  李润之  司荣军  张延松 《煤炭学报》2011,36(11):1879-1883
应用连续相、颗粒相计算方法对瓦斯爆炸诱导沉积煤尘参与爆炸的传播过程进行数值模拟,并以此对爆炸作用模式及其异同进行研究。根据模拟结果,从不同煤尘云点火机理在爆炸过程中所起主导作用将爆炸模式分别确定为沉积煤尘扬尘爆炸和沉积煤尘火焰燃烧。进一步分析表明:不同爆炸作用模式显著改变冲击波和火焰传播规律,影响小规模诱导火焰区的长度...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号