首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
随着新能源汽车、电子产品等产业的迅猛发展,其核心元件锂离子电池的需求量提升明显,但废旧锂离子电池带来的环境污染和资源浪费问题也日益严重。因此,对废旧锂离子电池的无害化处理和对其中稀缺的有价金属的有效回收利用已经成为国内外科研院所研究的热点及重点。本文综述了从废旧锂离子电池正极材料中提取有价金属的工艺:湿法回收工艺、火法焙烧-湿法冶金联合回收工艺、生物浸出回收工艺以及其他回收工艺。主要阐述了各种方法的原理及优缺点,指出了回收工艺的未来发展方向。   相似文献   

2.
这是一篇陶瓷及复合材料领域的论文。随着新能源汽车产业迅速发展,动力锂离子电池产量急剧增加。然而,由于动力锂离子电池使用寿命短,即将面临大规模退役,因此对动力锂离子电池进行有效资源化管理十分必要。本文首先对动力锂离子电池主要组成成分进行介绍,并阐明了其进行正极材料回收前梯次利用和预处理进程,重点综述了废旧动力锂离子电池正极材料火法、湿法和生物法回收技术,提出了生物法回收在废旧动力锂离子电池正极材料资源化处置问题上面临机遇与挑战。本文成果将为动力锂离子电池绿色资源化回收提供参考,促进新能源汽车产业健康发展。  相似文献   

3.
钕铁硼磁体(NdFeB)广泛应用于电机、电子电器、医疗器械、航天航空等高科技领域,且用量逐年增加。同时产生的废旧钕铁硼也越来越多。对废旧钕铁硼废料进行回收利用有助于解决中国稀土资源短缺,环境污染和资源浪费的问题。因此,系统的研究废旧钕铁硼的资回收利用非常重要。根据废旧钕铁硼的类型(污泥或废料),可以采用从湿法冶金、电化学到火法冶金的不同途径从废钕铁硼中回收稀土。本文系统综述了火法冶金回收废旧钕铁硼的主要方法,并总结了这些方法的优缺点,以期在有效回收废旧钕铁硼的工艺研究上提供理论指导。  相似文献   

4.
利用碳热还原、水浸过程结合硫酸工艺对废旧锂离子电池正极材料中的锂镍钴锰四种元素的浸出行为进行了研究,结果表明:碳热还原温度为650 ℃、碳热还原时间为100 min、水浸温度为25 ℃、水浸液固比为12 mL?g-1、搅拌速度为100 rpm、水浸时间为120 min,锂的浸出率为91.61 %;硫酸浓度2.0 mol?L-1、搅拌转速为200 rpm、液固比为9 mL?g-1、浸出温度为75 ℃时,浸出时间为90 min时水浸渣中镍钴锰的浸出率分别为95.83 %、96.22 %、98.02 %;该方法是一种较为高效的三元废旧锂离子电池中有价金属的回收方式。  相似文献   

5.
随着钕铁硼磁体(NdFeB)用量逐年增加,产生的废旧钕铁硼也越来越多.对废旧钕铁硼废料回收利用有助于解决我国稀土资源短缺、环境污染和资源浪费的问题.因此,系统研究废旧钕铁硼的回收利用非常重要.根据废旧钕铁硼的类型(污泥或废料),可以采用湿法冶金、电化学到火法冶金等不同途径从废钕铁硼中回收稀土.系统综述了火法冶金回收废旧...  相似文献   

6.
在国际前沿和国家战略性关键金属保护的大背景下, 废旧锂电池正极材料中的高价值材料如镍、钴、锰和锂等的回收利用已成为当前的研究热点。论文概述了锂电池正极废弃物有价金属回收工艺, 介绍了微波技术的原理及在冶金过程中的应用, 重点讨论了微波辅助火法—湿法联合工艺在焙烧还原过程、浸出过程、萃取过程的发展态势, 微波的参与节约了碳热还原时间、提高了金属离子的浸出率以及加快萃取过程的传质速率, 最终实现目标金属的产率和品质的提高。最后, 对未来废旧锂电池回收市场的发展前景进行了展望。   相似文献   

7.
碱性锌锰电池是用量最大的原电池。废旧碱性锌锰电池被丢弃后,会对环境产生污染,其回收利用已越来越受到人们的重视。在实验室研究了水浸—煅烧—真空铝热还原处理废旧碱性锌锰电池的工艺,通过物相与元素含量分析,对处理后物料的物相存在形式及钾和锌的回收率进行了研究。研究结果表明,废旧碱性锌锰电池物料通过水浸可使99%的氢氧化钾回收;水浸渣经煅烧后得到的煅后渣主要物相为ZnO和ZnMn2O4;煅后渣经真空铝热还原,可将锌和锰还原,并可使98%的锌回收,还原渣的主要物相为氧化铝与铝锰合金。   相似文献   

8.
采用氢氧化钠碱浸-碳分工艺处理废旧电池回收中间产物——铝渣, 实现了废渣中的镍钴锰与铝分离并分步回收。结果表明, 在反应温度200 ℃、氢氧化钠浓度6 mol/L、苛性比为5、碱浸5 h条件下, 碱浸液中铝浸出率可达97.70%, 镍钴锰浸出率小于0.23%; 碱浸渣经浸出-除杂-萃取后, 得到Ni、Co、Mn含量均大于100 g/L, Fe、Al含量均小于0.001 g/L的纯净硫酸镍、硫酸钴、硫酸锰溶液, 从而实现废旧三元锂电池中铝与镍钴锰的资源化高效回收利用。  相似文献   

9.
废锂电池有价金属的回收,是当前的一个热点。本文主要介绍了废锂电池的预处理以及回收有价金属的相关工艺的研究情况,如火法冶金、湿法冶金、火法焙烧-湿法冶金联合及生物冶金,为后续工作者从事废锂电池回收提供参考,同时展望了废锂电池回收的前景及方向。  相似文献   

10.
作为氧化铝生产过程中产生的强碱性废弃物,赤泥在我国具有年产量高,堆存量大,利用率低的现状,对资源环境威胁巨大。提取赤泥中大量含有的有价金属元素,对实现赤泥的资源化利用具有重大意义。本文简要叙述了赤泥的性质及组成。概述了赤泥中Fe的直接磁选法、还原-磁选法和湿法分离提取工艺;赤泥中Al的还原烧结法、钙化-碳酸化法、酸浸法和亚熔盐法提取工艺;赤泥中Ti的火法和湿法提取工艺;以及赤泥中Sc的火法-湿法联合法和湿法提取工艺,分析了各工艺的特点及存在的问题。认为目前实现工业化回收赤泥中有价金属的挑战在于赤泥组成成分复杂,导致有价金属回收的技术难度和处理成本较高;以及缺乏对多种元素系统性回收的工艺研究。提出开发更高效回收有价金属的技术,加强系统性提取赤泥中多种有价金属的相关研究,是未来实现赤泥资源化利用的关键。   相似文献   

11.
介绍了当前国内外三种车用锂电池正极材料的回收技术,包括火法冶金技术、湿法冶金技术和生物冶金技术。经过比较,以酸浸出—沉淀/萃取法为工艺流程的湿法技术对设备和能耗要求低、浸出效率高,是工业上方便引入的一种优异技术。  相似文献   

12.
采用湿法冶金方法回收废旧NCM523型锂离子电池正极材料中的镍、钴和锂, 正极材料的硫酸浸出液经净化除杂后, 采用“水热沉淀-煅烧法”制备NiCo2O4, 再采用化学沉淀法回收锂。研究了添加剂种类、水热温度及时间、煅烧温度对产物形貌的影响。结果表明, 以电极材料硫酸浸出液为原料, 以草酸作沉淀剂、六次甲基四胺作表面活性剂, 在140 ℃下水热反应4 h, 得到NiCo2O4前驱体; 前驱体在300 ℃下煅烧2 h, 得到形貌均匀的棒条状NiCo2O4材料; 采用饱和Na2CO3溶液沉淀水热反应母液中的锂, 得到Li2CO3。该工艺初步实现了废旧电池正极材料中有价金属镍、钴和锂的回收利用。  相似文献   

13.
磷酸铁锂是动力型锂离子电池的理想正极材料,在新能源汽车领域得到广泛应用,磷酸铁锂动力电池将是国内未来几年废旧电池回收的重点。目前已报导的废旧磷酸铁锂正极材料回收再生技术多处于研发阶段,以中国学者的研究成果居多。本文介绍了国内外LiFePO4正极材料的多种回收再生方法,包括高温直接再生和高温修复再生技术、湿法回收以及再生技术、生物回收技术等,并总结了各自的优缺点,指出废旧磷酸铁锂正极材料回收再生未来仍将以湿法回收为主,需在介质循环、高效除杂等方面继续改进,实现正极材料的低成本、绿色、高效回收,加快技术的产业化进程。  相似文献   

14.
高温固相法再生废旧磷酸铁锂电池正极材料   总被引:1,自引:1,他引:0  
通过强碱溶液浸泡过程分离废旧磷酸铁锂(LiFePO4)电池中的正极材料与铝箔集流体,经过热处理、砂磨混合和高温焙烧实现了LiFePO4的再生利用。采用XRD、SEM对再生样品的物相和形貌进行表征,结果表明,再生LiFePO4材料颗粒分布在纳米尺度下,粒径分布均匀,无团聚现象。电化学性能测试结果表明,在0.1C和5C电流密度下,再生LiFePO4放电比容量分别为165.2 和101.5 mAh/g; 在1C倍率下循环100次后,材料容量为150.1 mAh/g,保持率为97.85%,表现出较好的倍率和循环性能。该再生工艺简单、合成的材料电化学性能良好,为加快废旧磷酸铁锂电池回收和再生提供了新的借鉴。  相似文献   

15.
夏文堂  张启修  徐瑞 《有色金属》2005,57(1):64-67,70
研究用水法预处理和火法回收相结合的工艺从高速钢磨屑中再生含W Mo Cr V的合金,分析原料粒度、还原剂、石灰等对回收率的影响。结果表明,回收工艺可行,W和Mo回收率在96%以上,Cr和V回收率不低于91%。再生合金产品质量稳定,可满足高速钢炼钢使用要求  相似文献   

16.
动力电池电芯破碎试验研究   总被引:1,自引:1,他引:0  
分析了动力电池破碎产品的物料特性及影响破碎效率的关键因素,为了实现废旧动力电池的高效回收,设计了破碎试验装置,结果表明,矩形刀、锯齿刀、V型刀3种刀型转子中,矩形刀转子破碎后产品形状规则,挤压变形少,粒度更细,破碎效率高,产品中少有折叠和挤压现象,易于后续分选。矩形刀转子在转速653 r/min、间隙1 mm条件下,破碎产品中-19 mm粒级新增率达到90.5%。  相似文献   

17.
对现有废旧磷酸铁锂电池回收技术进行了总结, 简要介绍了废旧磷酸铁锂正极材料再生修复技术现状, 重点评述了湿法冶金选择性浸出废旧磷酸铁锂技术原理和现有技术方案的研究进展, 并对一些回收新技术进行了简述。通过对比不同技术方案的优劣势, 对废旧磷酸铁锂电池回收提锂技术发展趋势进行了展望。  相似文献   

18.
Production of LiBs and NiMH batteries is expected to increase rapidly due to the soaring price of oil and gas which increases interest in renewable energy as well as the introduction of hybrid vehicles (HVs), and electric vehicles (EVs) which used secondary batteries as an effective energy storage device. Development of an efficient recycling scheme to recover the valuable parts and safely dispose the harmful one at batteries end life is a necessity. The challenge, however, is how to recover all the valuable metals without sacrificing the economics of recycling process.Several LiBs and NiMH batteries recycling processes have been developed in recent years. A review of these processes and their development timeline was presented in this paper. It was found that the major drawback of these recycling processes is the losses of some of batteries valuable parts since these recycling processes are not originally developed for this type of batteries. Also, some of these processes are expensive and designed for specific types of batteries which ignore contamination of recycling stream with impurities and other type of batteries.Using minerals processing operations such as grinding, sieving, magnetic, electrostatic, and gravity separations to liberate batteries electrodal materials and concentrate valuable metals is critical step in any recycling process. This may be due to the simplicity, efficiency, flexibility, and high throughput of these separation processes. The literature showed that applying these processes reduces the volume of LiBs and NiMH scrap, liberates their valuables, reduces the need for leachate purification in hydrometallurgical process, and facilitates the decomposing of battery’s electrolyte. Based on these results a flowsheet to recycle mixed stream LiBs, and NiMH battery scrap was proposed.  相似文献   

19.
蒋国祥  李明晓  谭伟  王宏锋 《矿冶》2017,26(1):50-53
介绍了含砷炼铜料的两类除砷方法——火法除砷和湿法除砷,对比了两类除砷方法的优缺点,得出湿法除砷具有工作环境好、原料适应广、除砷手段丰富等优势,是未来炼铜除砷的发展方向。并指出含砷炼铜料中砷的最终走向是固化造渣或回收利用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号