首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 875 毫秒
1.
七宝山铁尾矿还原焙烧—弱磁选回收铁试验   总被引:1,自引:0,他引:1  
江西七宝山铁尾矿成分复杂,铁品位达38.74%,主要铁矿物为针铁矿。为了高效回收其中的铁,采用还原焙烧—弱磁选工艺进行了试验研究。结果表明:提高煤粉添加量、延长焙烧时间、提高焙烧温度均有利于提高还原焙烧产物中铁的金属化率和金属铁粉的指标;在煤粉添加量为15%,还原焙烧温度为1 250℃,还原焙烧时间为60min,焙烧产物磨至-325目占58.80%,弱磁选磁场强度为88 kA/m情况下,可获得铁品位为88.80%、铁回收率为92.28%的金属铁粉。还原焙烧产物的微观分析表明:在还原焙烧初期,焙烧产物中生成了大量微细粒铁颗粒,随着还原焙烧时间的延长,细小的铁颗粒不断兼并、集聚,60 min后铁颗粒不再明显集聚、长大;随着还原温度的提高,焙烧产物中的铁颗粒显著长大,在1 250℃情况下,铁颗粒长至100μm左右;长大的铁颗粒中包裹细小脉石颗粒是造成金属铁粉铁品位难以进一步大幅度提高的主要原因。  相似文献   

2.
曹永丹  汪倩  曹钊  张金山 《矿冶》2014,23(3):5-8
包钢选矿厂尾矿中含有大量的铁、稀土、铌等有用资源,其中全铁品位为16.1%,主要以赤铁矿形式存在,磁化焙烧一弱磁选是回收其中铁的有效方法。对原料进行磁化焙烧及磁选条件优化试验,得到最佳的磁化焙烧条件为还原剂用量为8%、焙烧温度700℃、时间60 min,焙烧矿磨至-0.045 mm占86%,最佳的磁场强度为111.5 kA/m,在此试验基础上,进行磁化焙烧一磨矿一磁粗选一磁选柱精选全流程试验,可得到铁品位63.49%、回收率67.05%的最终铁精矿。为类似尾矿综合利用提供借鉴。  相似文献   

3.
从高炉瓦斯灰回收铁的试验研究   总被引:1,自引:1,他引:0  
对包钢瓦斯灰进行了工艺矿物学分析,并进行了弱磁选一高梯度强磁选和磁化焙烧一弱磁选工艺试验研究.结果表明,弱磁选一强磁选试验能回收大部分铁矿物,并且使铁矿物与碳、锌等矿物得到有效的分离,铁精矿的品位达到55.42%,回收率79.48%;另外在磁化焙烧一弱磁选最佳试验条件下能获得铁精矿品位60.70%,回收率达到70%以上.  相似文献   

4.
为缓解高炉渣、尾矿等工业废渣的大量堆存对环境的危害,降低矿山开采胶结充填成本,探讨以尾矿和高炉渣、石膏、赤泥等工业废渣为主要原材料,以固体水玻璃为激活剂,制备新型工业废渣-尾矿基胶结充填材料的试验。得出最佳配方为:浆料浓度70%、灰砂比1∶3.89,高炉渣78.70%、石灰11.11%、石膏2.78%、固体水玻璃7.41%,并对高炉矿渣在胶结充填中的胶凝机理进行了研究,对尾矿资源再利用及工业生产具有重要的指导意义。  相似文献   

5.
酒钢镜铁山铁矿石直接还原-磁选试验研究   总被引:1,自引:1,他引:0  
以高炉除尘灰为直接还原剂, 针对镜铁山式难选铁矿石进行了直接还原-磁选试验研究。结果表明, 高炉除尘灰有较好的还原效果, 在配比为30%、焙烧温度为1 200 ℃、焙烧时间为60 min的条件下, 可以获得铁品位93.45%、铁总回收率为87.14%的还原铁粉。研究表明, 酒钢镜铁山矿直接还原制备还原铁粉是可行性的, 同时为高炉除尘灰的开发利用找到了一个新的途径。  相似文献   

6.
袁家村铁矿选矿厂综合尾矿TFe品位17.50%,主要含铁矿物为赤(褐)铁矿和磁铁矿,有害元素硫、磷含量很低,铁矿物嵌布粒度细小,回收难度较大。为了给该尾矿的综合利用提供技术支持,对其进行了预富集-磁化焙烧-磁选工艺研究。结果表明:在磨矿细度为-0.037 mm75%(不磨),强磁选粗选背景磁场强度为478 kA/m,强磁选精选背景磁场强度为398 kA/m的条件下,可获得铁品位为23.24%、铁作业回收率为86.38%的强磁选预富集精矿;强磁选预富集精矿在气体流量5 m3/h、CO浓度30%、磁化焙烧温度560℃、焙烧时间15min、焙烧产物磨矿细度为-0.037 mm90%、弱磁选磁场强度为88 kA/m的条件下,可获得铁品位61.82%、铁作业回收率80.91%、对原矿回收率55.98%的铁精矿产品。  相似文献   

7.
基于还原焙烧的某海滨钛磁铁矿的钛铁分离   总被引:1,自引:0,他引:1  
为了高效分离印尼某高铁钛、低硫磷海滨钛磁铁矿中的钛铁,实现资源的充分利用,采用直接还原焙烧-磨矿-弱磁选工艺对该试样进行了还原焙烧工艺技术条件研究,并对确定条件下的焙烧产物进行了不同磨矿细度下的钛铁分离验证试验。结果表明,添加剂NCS对铁还原和钛铁分离有促进作用;在烟煤A用量(与试样的质量比)为30%、NCS用量为11%、还原焙烧温度为1 250 ℃、还原焙烧时间为60 min、磨矿细度为-43 μm占6902%、弱磁选磁场强度为151 kA/m的情况下,可获得TFe品位为9374%、回收率为9591%、TiO2品位为045%的还原铁粉,实现了钛铁的高效分离;钛在尾矿中的富集为后续回收钛创造了条件。  相似文献   

8.
某氰化尾渣直接还原焙烧-磁选选铁试验   总被引:1,自引:0,他引:1  
刘娜  孙体昌  刘真真  蒋曼 《金属矿山》2012,41(11):145-147
对铁品位高达48.05%的某氰化尾渣进行了直接还原焙烧-磁选试验研究。结果表明,在烟煤2用量为20%,还原温度为1 150 ℃,还原时间为40 min,还原产物磨矿细度为-0.074 mm占78%,1次弱磁选磁场强度为87.56 kA/m情况下获得了铁品位为94.11%、回收率为90.14%的还原铁粉。该工艺不仅高效地富集了铁,而且使硫等含量较高的有害成分富集到了尾矿中。  相似文献   

9.
针对川南低品位硫铁矿烧渣,采用磁化焙烧-磁选工艺开展选铁试验研究,探索了主要的工艺参数,研究了选铁尾矿的火山灰活性。结果发现,原烧渣在800℃、配加煤粉(2%,质量分数)的条件下,磁化焙烧30 min,能够有效将赤铁矿转化为磁铁矿;经“1粗1精1扫”3段磁选流程选别得到的铁精矿品位可达60.54%。将选铁尾矿再磨至D90为43μm时,28 d活性指数高达94.3%,满足高强高性能混凝土用矿物外加剂的活性要求。  相似文献   

10.
大量高铁铝土矿因氧化铁含量高、矿物嵌布关系复杂而处于待开发状态。为确定四川某高铁铝土矿的高效开发利用方案,对还原焙烧—弱磁选提铁—铝溶出的铝铁高效分离回收工艺中主要影响因素——焙烧制度、焙烧产物磨矿细度及弱磁选磁场强度进行了单因素条件试验。结果表明,在还原焙烧试样粒度为0.18~0 mm、配碳系数为2.0、焙烧温度为1 350℃、焙烧时间为20 min、焙烧产物磨矿细度为-0.074 mm占91%、弱磁选磁场强度为60kA/m情况下,可取得铁品位为89.83%、铁回收率为84.08%的金属铁粉,Al2O3浸出率为69.35%,较好地实现了铝、铁分离。  相似文献   

11.
为了回收白云鄂博铁矿选铁尾矿中的铁矿物,采用强磁预富集-悬浮磁化焙烧-磁选工艺进行铁矿物再选试验。结果表明:TFe品位为14.10%的白云鄂博铁矿选铁尾矿经磁选预富集所得精矿在总气量600 mL/min、CO浓度15%、焙烧温度800 ℃、焙烧时间5 min条件下焙烧后,焙烧产品磨细至d90=39.29 μm,在磁选管磁场强度为10.56 kA/m时,可获得TFe品位为63.88%、对原矿回收率为57.25%的磁选精矿。对试验各阶段产品分析表明,焙烧温度过高、焙烧时间过长会导致过还原,同时焙烧过程使得预富集精矿中表面光滑无裂纹的赤铁矿变为表面伴有微裂纹的磁铁矿。研究结果为多金属共(伴)生铁矿资源的高效利用提供了理论基础。  相似文献   

12.
张毅  余莹  张五志  高鹏 《金属矿山》2021,50(7):142-145
为了确定适宜的磁化焙烧条件,采用磁化焙烧—磁选工艺,对鞍钢某铁尾矿进行了系统的试验研究,考察了焙烧温度、焙烧时间、还原气体浓度以及气体流速对磁化焙烧效果的影响,结果表明:①鞍钢铁 尾矿TFe品位为14.70%,主要杂质SiO2含量为66.17%,有害元素P、S、Na的含量较少;铁尾矿中的铁主要以赤、褐铁矿的形式存在,分布率为83.87%;铁尾矿中主要有用矿物为磁铁矿、赤铁矿,主要脉石矿物为石英。 ②该铁尾矿适宜的焙烧条件为:焙烧温度580 ℃、焙烧时间5 min、CO浓度30%、气体流速500 mL/min;在此条件下获得的焙烧产品,经弱磁选(磁场强度为87.12 kA/m)选别,可获得TFe品位62.17%、TFe回收率 84.02%的磁选精矿。③焙烧产品的铁物相分析结果表明,经过磁化焙烧,试样中磁性铁的含量和分布率显著提高,赤、褐铁矿中的铁含量和分布率则大幅度降低。不同焙烧时间下产品的XRD谱图结果进一步说明铁尾矿 中的赤铁矿转换成了磁铁矿。研究结果可为同类型尾矿的开发利用提供参考。  相似文献   

13.
鉴于酒钢-1 mm镜铁矿粉矿采用常规选矿方法难以获得好的分选指标,进行常规磁化焙烧—弱磁选又需解决球团问题,以哈密烟煤为还原剂,对该粉矿开展了微波磁化焙烧—弱磁选研究,考察了煤粉用量、微波功率、焙烧温度、焙烧时间、焙烧产品磨矿细度和弱磁选磁场强度对所获铁精矿指标的影响。试验结果表明,在煤粉与矿石的质量比为5%、微波功率为1 k W、焙烧温度为550℃条件下将该粉矿微波磁化焙烧15 min,然后将焙烧矿磨细至-0.074 mm占85.65%,在92.16 k A/m磁场强度下进行1次磁选管选别,可获得铁精矿铁品位为55.10%、铁回收率为86.65%的较好指标,从而为该-1 mm镜铁矿粉矿中铁矿物的高效回收提供了一种新思路。  相似文献   

14.
基于直接还原法探讨了焙烧制度对煤泥-浸锌渣冷固结球团中锌、铅挥发率和铁金属化率的影响,分析了焙烧制度对球团中含锌、铅、铁化合物相变的影响,试验确定了焙砂磨矿-弱磁选回收其中铁的工艺和效果。结果表明:在1 250 ℃焙烧90 min,可使球团中锌、铅的挥发率分别达到98.87%、95.39%,铁的金属化率达到98.66%;焙砂中未见锌、铅单质及其化合物,只存在大量的金属铁,且金属铁颗粒多数大于30 μm;焙砂采用2段磨矿、2段弱磁选流程处理,可同时获得含铁91.20%、回收率为30.32%的金属铁粉和铁品位为61.58%、回收率为50.01%的铁精矿,铁总回收率达80.33%。  相似文献   

15.
为考察高炉灰作为还原剂用于高磷鲕状赤铁矿石还原焙烧的可能性,以鄂西某铁品位为42.72%的鲕状赤铁矿石和河北某铁品位为23.96%、固定碳含量为32.83%的高炉灰为原料,进行了共还原焙烧回收铁试验。结果表明:在高炉灰用量为30%、共还原焙烧温度为1 150 ℃、焙烧时间为60 min、还原产品磨矿细度为-0.043 mm占96%、磁选磁场强度为87.58 kA/m条件下,可获得铁品位为91.88%、回收率为88.38%、磷含量为0.072%的还原铁。不同高炉灰用量下焙烧产品的XRD分析结果表明:随高炉灰用量的增加,铁的衍射峰逐渐增强,增加高炉灰用量有利于含铁矿物被还原成金属铁,但还原铁产品磷含量也升高。高炉灰作为还原剂用于高磷鲕状赤铁矿共还原焙烧,为高效利用高炉灰和难选铁矿石提供了一种新思路,又可以降低鲕状赤铁矿石直接还原焙烧的成本,同时减轻高炉灰对环境的污染,具有较高的经济和环境效益。  相似文献   

16.
为实现固体废弃物的高值化利用,从微晶泡沫玻璃的制备机理、工艺流程及温度制度等方面分析了工业固体废弃物制备微晶泡沫玻璃的可行性,重点论述了金属矿尾矿、赤泥、高炉矿渣、煤矸石、粉煤灰等固体废弃物制备微晶泡沫玻璃的国内外研究进展,并对微晶泡沫玻璃的研究和发展趋势进行了展望。  相似文献   

17.
为实现固体废弃物的高值化利用,从微晶泡沫玻璃的制备机理、工艺流程及温度制度等方面分析了工业固体废弃物制备微晶泡沫玻璃的可行性,重点论述了金属矿尾矿、赤泥、高炉矿渣、煤矸石、粉煤灰等固体废弃物制备微晶泡沫玻璃的国内外研究进展,并对微晶泡沫玻璃的研究和发展趋势进行了展望。  相似文献   

18.
东鞍山含碳酸盐正浮选尾矿铁品位为43.53%,主要含铁矿物为赤铁矿、磁铁矿和菱铁矿。为给该正浮选尾矿高效回收利用提供依据,采用悬浮焙烧—磁选工艺进行了选矿试验。结果表明:在气体流量为12 m3/h、H2浓度为40%、焙烧温度为600℃、焙烧时间为8 s条件下进行悬浮焙烧试验,焙烧产品磨细至-0.043 mm占95%,在磁场强度为85.1 k A/m条件下弱磁选,可获得铁品位为60.52%、回收率为78.68%的精矿。对悬浮焙烧前后物料的磁性检测、XRD分析可知,试样中弱磁性的含铁矿物经悬浮焙烧后转变为强磁性的磁铁矿,磁性增强,扩大了铁矿物与脉石矿物的磁性差异,可通过弱磁选进行有效分离。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号