首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
褚福延  吴爱军  南玮 《中国矿业》2021,30(6):127-132
为了研究近距离煤层群下行开采过程中,下煤层工作面受到上覆煤柱影响形成高应力区后,导致顶板垮落、冲击地压、煤壁片帮、瓦斯爆炸等煤矿灾害的发生问题,本文运用FLAC~(3D)软件,分别对厚度为1m、2m、3m、5m的上覆煤柱作用下位煤层开采前及开采过程中顶板应力分布动态变化规律进行数值模拟与分析。研究表明:①在下煤层未开采前,上覆煤柱会使下煤层处于应力集中状态;当煤柱厚度增加时,下煤层顶板支承应力场峰值、应力集中系数和应力集中区域范围逐渐减小,支承应力场峰值始终处于煤柱中心线附近。②随着工作面推进距离的增加,采区前方应力集中区域范围逐渐减小,支承应力场峰值及集中系数先增大后减小;在工作面推进过程中,煤柱厚度越小,工作面前方顶板支承应力峰值、集中系数和集中范围越大,应力集中区域与工作面的距离越小,越应注意防止冒顶、顶板破碎等矿井灾害事故的发生。  相似文献   

2.
针对浅埋近距离煤层工作面过上覆三角形遗留煤柱开采,存在顶板局部来压强烈和区段煤柱应力集中导致的巷道大变形等问题,以寸草塔二矿31109工作面为研究背景,采用现场实测、数值计算和理论分析相结合的方法,研究过三角形煤柱两次采动叠加应力的大小和范围的演化规律,揭示两次采动区段煤柱压力变化规律和相邻巷道破坏机理,明确巷道加强支护的范围和重点支护范围与时机。研究结果表明:上覆三角形斜交煤柱对其下方工作面煤层形成应力集中,最大应力位置位于斜交区段煤柱之下;当下煤层31206工作面开采后,31109区段煤柱应力上升为最大应力,应力峰值区位于与上覆斜交区段煤柱叠合区附近,峰值区宽度为240 m,对应该区域巷道变形破坏较明显。31109工作面开采过程中,在工作面煤壁与上覆斜交煤柱叠加区和工作面区段煤柱与上覆斜交煤柱叠加区存在应力峰值区,形成应力双峰;随着工作面推进,双峰应力不断升高,且煤壁应力峰值区逐步向区段煤柱方向移动,当工作面推进到区段煤柱叠加区时,双峰合并为更高的单峰应力;在工作面出斜交煤柱时区段煤柱应力达到最大,出煤柱叠加区后应力迅速减小;总体上,31109工作面开采后区段煤柱应力峰值区最大应力...  相似文献   

3.
针对近距离煤层下伏工作面过上覆遗留煤柱时,发生动静载叠加诱发强矿压显现,导致区段煤柱发生变形失稳造成人员伤亡和设备破坏。为探索基于光纤光栅实时监测区段煤柱变形发育特征,分析进、出遗留煤柱阶段矿压显现机理,将FBG、光栅应力计的光测方法相结合,结合现场实测的区段煤柱变形应力应变水平参量变化规律,研究煤柱应变空间分布规律及回采过程中工作面前方煤柱内部应变时域响应特征,验证光测方法在煤体应变水平观测的可行性。结果表明:工作面回采经过上覆遗留煤柱期间,区段煤柱顶板受集中应力影响,上部岩层块体破断并发生回转导致煤柱载荷增加,随着工作面推进覆岩断裂进一步向上传递,关键层断裂回转发生导致工作面来压,最终导致区段煤柱变形失稳。根据现场光栅应变增量幅度判断煤柱内局部变形的剧烈程度,在集中应力作用下,区段煤柱变形时发生最大应变为650×10-6,上覆岩层集中应力造成煤柱应变水平峰值位置为煤柱宽度11.5 m,沿煤柱宽度方向应变表现出先增加后减小然后趋于稳定的趋势,内部应变随采动过程中影响范围在5 m左右。综合研究工作面回采经过上覆遗留煤柱时应变对区段煤柱发生变形失稳的特点和规律,以及应变水平变化和煤柱物理...  相似文献   

4.
针对平煤股份一矿采深830 m左右的戊10-31100工作面过8号断层同时过上覆戊8煤柱安全开采问题,通过UDEC数值模拟实验,对工作面及上覆戊8煤柱的应力分布进行了分析,根据应力分布特征制定了开采措施。结果表明:受戊8煤柱集中应力的影响,戊10-31100工作面在进出煤柱时均处于应力升高区,顶板压力大,断层带顶板破碎,维护困难。通过有效的安全开采措施,实现了戊10-31100工作面过8号断层及戊8煤柱的安全开采。  相似文献   

5.
以义桥煤矿已开采“刀把”工作面与接续工作面之间形成的孤岛煤柱为研究对象,采用FLAC3D数值模拟方法研究了采动影响下孤岛煤柱体内应力集中塑性区发育情况。结果表明:接续工作面推至孤岛煤柱时,在三侧应力叠加下煤柱应力高度集中并完全塑性破坏,煤柱易失稳且易诱发冲击地压;随工作面与孤岛煤柱南端距离增大,应力集中程度随之降低,煤柱稳定性逐渐增大,冲击危险性相应减小。  相似文献   

6.
为避免突出煤层相向掘进的工作面前方应力叠加造成动力灾害,分别实测和模拟了永红煤矿相向掘进的工作面前方采动应力影响区。实测结果表明:永红煤矿掘进工作面前方采动影响区范围为5~7 m,掘进工作面后方采动影响区范围为8~9 m,单巷掘进引起的采动影响区范围为13~16 m;数值模拟结果显示:两相向掘进的工作间距20 m时,工作面之间移动支承压力出现叠加;两掘进工作面相距37.5、50 m时,掘进工作面前方的煤柱处于弹性状态,前方煤柱上的移动支承应力无叠加现象,但相距37.5 m比50 m的煤柱宽度少了12.5 m的原岩应力区。综合实测和数值模拟结果及永红煤矿实际,工作面相向掘进停掘的合理间距选为50 m,因为此时2个工作面均未处于对方集中应力影响范围内,且工作面之间还具有12.5 m的原岩应力区,能够保证工作面安全掘进。  相似文献   

7.
汪锋  许家林  谢建林  郭杰凯  刘栋林 《煤炭学报》2013,38(11):1917-1922
针对平顶山一矿31010工作面回采期间顶板丁戊三乘人巷严重变形的问题,通过现场实测和数值模拟研究了巷道变形的原因及保护煤柱留设的问题。结果表明:工作面回采后,上覆顶板岩层中的应力发生改变,将应力值等于1.05倍原岩应力的点构成的曲线定义为采动应力边界线。采动应力边界线由开采煤层向上覆岩层呈外扩式发展,采动应力边界线距开采边界的水平距离随着距开采煤层高度的增大而逐渐增大,但增大趋势逐渐减小。采动应力边界线内侧岩层应力出现增压区和减压区,而外侧岩层仍处于原岩应力状态,采动应力边界线是划定工作面上覆岩层是否受工作面回采影响的边界线。目前顶板巷道保护煤柱宽度是按岩层移动角进行设计的,没有体现内部岩层移动变形及应力特征,导致顶板巷道保护煤柱宽度不合理而出现破坏,为此提出了基于采动应力边界线的顶板巷道保护煤柱宽度设计方法。按照此方法设计的平顶山一矿31010工作面顶板乘人巷保护煤柱宽度应为158 m。  相似文献   

8.
《煤矿安全》2016,(7):51-54
针对神东矿区大柳塔矿22202工作面可能存在顶板剧烈来压和压架事故等问题,采用理论分析和数值模拟方法研究长壁开采应力演化规律及压架机理。结果表明,工作面进入房采煤柱下方后,支承应力峰值点超前工作面距离会显著减小,造成顶板应力和超前支承峰值应力叠加,使应力集中更加明显。当工作面处于煤柱正下方时,如果顶板来压,在集中应力共同作用下将引发压架事故;在房采煤柱采空区边缘顶板运动不稳定,压架发生的规律性差;远离采空区边缘后,顶板来压的周期性明显,压架事故将会周期性地发生。  相似文献   

9.
针对沿空掘巷及本段工作面采掘扰动对高应力厚煤层护巷煤柱的稳定性影响问题,以陕西金源招贤煤矿1305工作面为工程背景,通过理论分析、数值模拟及现场实践的方法,分析了采掘过程中煤柱内应力演化及基本顶的破断规律,给出了基本顶初次及二次破断后的力学模型,分析了采掘过程中工作面前40 m范围内护巷煤柱的应力和弹塑性区分布规律。结果表明:工作面采掘致使基本顶破断形成的三角块结构是造成煤柱失稳的重要因素;风巷掘进期间,应力集中区与峰值应力主要分布在采空区侧煤柱内,巷道侧煤柱基本稳定;1305工作面回采期间,工作面前方20 m范围内煤柱应力叠加现象明显且塑性区宽度增加幅度较大,在30 m和40 m处煤柱应力分布规律与掘巷期间相似且塑性区宽度增加较小。综上表明,工作面采动对前方20 m煤柱的稳定性影响严重。现场实践证明合理的支护参数设计能有效控制巷道围岩的稳定性。  相似文献   

10.
针对近距离煤层群上煤层留设的区段煤柱在煤柱下方形成一定区域的应力增高区,下煤层回采巷道受集中应力影响维护困难、严重影响正常生产这一难题,结合新柳矿地质条件采用UDEC2D数值计算及现场实测研究了煤柱下方底板集中应力分布特征,分析了下煤层回采巷道的布置方式对巷道围岩变形的影响,研究表明:上煤层残留煤柱越大,底板应力集中系数越大;在上煤层残留煤柱集中应力影响和本煤层工作面采动引起的应力重新分布耦合作用下,回采巷道顶底板及两帮移近量接近2000mm,巷道变形破坏严重。提出把巷道布置在采空区下方应力降低区内,减少本煤层区段煤柱宽度以及加强巷道超前支护可保证下煤层巷道稳定。  相似文献   

11.
为掌握厚层坚硬顶板大采高工作面切顶卸压无煤柱自成巷矿压显现特征,以吉宁煤矿2109工作面为工程背景,通过对留巷过程中工作面支架压力、巷道围岩变形量、恒阻大变形锚索受力、顶板离层变化分析,表明切顶爆破能够切断采空区顶板对巷道顶板的应力传递,使留巷侧顶板处于明显的卸压状态,并给出工作面自成巷受采动影响范围和影响程度,为设计提供依据,供相似条件参考。  相似文献   

12.
《煤矿安全》2013,(10):48-51
为了研究回采过程中相邻采空区工作面不同尺寸煤柱中的采动应力变化规律,针对兴隆庄煤矿七采区冲击地压防治的实际需要,采用离散元数值模拟研究了相邻采空区煤柱的采动应力、塑性区和顶板下沉量变化规律。研究表明:开采过程中所留设的煤柱,受两侧采空区的影响而产生压力叠加,形成较高的煤柱支承压力;随着工作面的推进,煤柱中的双峰应力逐渐合二为一,应力峰值并逐渐增大,在煤柱附近及其上下方的应力集中区内,最容易产生冲击地压。实践证明:模拟结果与现场实际基本相符。  相似文献   

13.
为研究特厚倾斜煤层开采时煤柱应力变化状态,结合抚顺矿区老虎台矿特厚煤层开采现状,针对83003综放面和73005综放面构建力学模型。采用相似材料模拟实验对煤柱应力进行监测,得到了应力演化规律,根据实验结果对现场布置合理的防治冲击地压措施。研究结果表明:煤层赋存越深,煤柱受采动影响的应力值越大,应力集中系数呈增长趋势,变化范围为1.09~3.12;73005综放面和83003综放面之间的煤柱应力明显高于模型边界煤柱应力;工作面之间的煤柱受开采影响次数越多,煤柱应力值越大;工作面推进时,上覆岩层的垮落使岩层中的应力充分释放,随着采空区逐渐压实,应力值有所回升。通过相似材料模拟研究,对工作面的开采进行指导,运用煤层注水、卸压钻孔和加强支护等措施对冲击地压进行防治,达到了理想的效果。  相似文献   

14.
针对遗留煤柱对下位巷道及采场产生的不利影响,以近距离煤层下行开采为背景,采用理论解析及现场实测等方法,对煤柱下底板偏应力不变量的区域特征、工作面出煤柱压架灾害的发生机理及其尺度效应展开研究。结果表明:(1)当上煤层相邻工作面开切眼位置不平齐时,下位巷道通过采取平错式布置,在保障巷道自身稳定的前提下,成功将工作面全长出一侧采空煤柱转化为2次小范围的出煤柱过程,实现对采场压架灾害的提前防治。(2)采用偏应力第二不变量(J2)、偏应力第三不变量(J3)和偏应力第二不变量(J2)水平变化率解析煤柱下方底板岩层的应力状态,并对底板进行分区,确定下位巷道平错距离的下限值为24 m。(3)工作面出煤柱期间,初次来压或周期来压与顶板-煤柱系统突变失稳产生的动载矿压耦合叠加形成冲击是压架灾害发生的根本原因,计算出煤柱尺度效应,得到平错距离上限值为36 m。燕子山煤矿工业性实践验证了下位巷道采取平错式布置且平错距离为30 m的可行性与合理性。  相似文献   

15.
《煤炭技术》2017,(1):1-3
针对寨崖底矿煤柱下回采巷道失稳问题,通过理论分析、数值模拟和现场实测等方法,分析了寨崖底矿煤柱下煤层巷道的破坏机理。得出了上煤层工作面回采后,遗留煤柱底板应力分布规律。发现煤柱下煤层高应力集中区围岩受工作面采动动载高应力扰动出现垂直应力峰值增大、应力集中区范围增加、非对称应力场,是此类巷道大变形破坏的根本原因,且预测采动影响范围为工作面前方60 m至后方130 m。  相似文献   

16.
为确定某矿3303工作面不规则煤柱处于两侧采空状态时的稳定程度,通过数学模型对不规则煤柱最小安全尺寸及煤柱稳定性系数进行计算,在此基础上,以数值模拟对不规则煤柱两侧采空状态下的应力变化规律展开分析。结果表明:煤柱最小安全尺寸为31.2 m,大于3303工作面推进36.5 m范围内不规则煤柱尺寸;煤柱稳定性系数为1.14,根据煤柱稳定性判别指标判定煤柱为稳定状态;不规则煤柱应力随工作面推进距离增大呈上升趋势,最大应力值与理论计算煤柱承载强度最小值基本一致;综合评定双侧采空状态下,不规则煤柱能够保持稳定。  相似文献   

17.
深井动压巷道群围岩应力分析及煤柱留设研究   总被引:3,自引:0,他引:3  
为了深入研究深井动压巷道群及其硐室围岩应力分布及其变形破坏特征,基于采动支承应力在煤层底板及前方的传递规律,采用FLAC数值模拟软件对不同开采条件下深部集中动压巷道围岩进行了模拟分析,结果表明深部集中巷道群在单侧工作面开采保留80m煤柱时,受采动影响不大.而两侧先后回采后,巷道群位于开采形成的孤岛煤柱内,受集中采动应力叠加影响,应力集中系数增大,巷道破坏程度加强,同时岩性的不同对巷道稳定性也有很大的影响.对于未采工作面提出了合理的煤柱尺寸,成功的指导了工程实践,为类似条件下的巷道群围岩控制和提高煤炭回收率具有借鉴和指导意义.  相似文献   

18.
冲击地压矿井采区下山保护煤柱合理宽度研究   总被引:1,自引:0,他引:1  
留设合理宽度的采区下山保护煤柱是防范采区下山发生冲击地压的关键。为探讨冲击地压矿井采区下山保护煤柱宽度的确定方法,以李楼煤矿采区下山保护煤柱合理的宽度确定为工程背景,运用矿压理论研究了工作面向采区下山推采过程中覆岩运动规律、支承压力演化特征、冲击地压类型及其发生机制,分析了现场工作面推采过程中的微震监测数据和应力动态监测数据,综合确定了李楼煤矿工作面采动影响范围,提出了以防范各类冲击地压为原则的采区下山保护煤柱宽度的综合确定方法,并进行了工程验证。结果表明:①随着工作面向采区下山推进,采区下山保护煤柱宽度逐渐减小,工作面超前支承压力与采区下山侧向支承压力及两翼工作面超前支承压力将发生叠加、集中,震动附加应力与采区下山侧向支承压力叠加程度逐渐增大;②采区下山可能发生静动载叠加型、应力叠加型和蠕变型等3类冲击地压;③工作面超前、滞后采动影响距离为235 m,侧向采动影响距离为105.5 m;④从防范采区下山动静载叠加型、应力叠加型和延后蠕变型冲击地压的角度,综合确定李楼煤矿采区下山一侧保护煤柱宽度应不小于235 m。回采后期现场监测结果与收尾情况初步验证了当前李楼煤矿采区下山一侧保护煤柱240 m的合理性。  相似文献   

19.
针对西北地区某矿近距离煤层开采分组集中大巷稳定性问题,建立了近距离煤层开采分组集中大巷稳定性数值计算模型,分析了近距离煤层开采后顶板位移、顶板应力、围岩应力演化规律、锚杆(索)预应力场以及裂隙场演化规律。结果表明:(1)近距离煤层开采之后,大巷煤柱两侧的顶板发生断裂垮落,距离大巷煤柱越远,顶板下沉量越大;(2)随着近距离煤层开采,大巷之间保护煤柱的集中应力逐渐消失,工作面两侧大巷保护煤柱中出现10 MPa的应力集中现象,应力降低区范围大大增加,应力转移到左右工作面大巷保护煤柱中;(3)随着煤层开采,大巷围岩在地应力场与锚杆(索)预应力场的叠加场影响最小主应力的压应力逐渐增加,并在巷道周围形成了一个闭合连续的压应力带,其范围不断增大,最小主应力值逐渐减小,且下层煤的开采使上层煤的大巷锚杆(索)所受的力增加;(5)下层煤的开采使得上层煤两侧工作面大巷保护煤柱的剪切破坏带深度增加,最大破坏深度增加14 m,下层煤的大巷只在两帮出现深度为2 m的剪切破坏区,而两侧工作面的大巷保护煤柱出现10 m的剪切破坏。  相似文献   

20.
为获取煤层群错位布置工作面煤柱应力集中区巷道发生大变形的机制,采用数值计算及现场实测的方法对巷道围岩受力特征及破坏规律进行了研究。研究结果表明,煤层群上组煤层煤柱集中应力与下组煤层31112工作面回采后的侧向支承压力叠加导致巷道受力大幅增加,原有支护强度不足导致巷道发生大变形;分析了叠加应力大幅增加的主要原因是错位工作面上组煤层传递的集中应力来源于采区边界煤柱,而边界煤柱向下传导应力影响范围较区段间煤柱大,且衰减慢,同时侧向支承压力叠加下加剧了巷道围岩受力的不平衡性,巷道围岩在邻近采空区的副帮侧及副帮顶板破坏范围较大,造成了巷道的局部失稳进而形成大变形。依据实测的破坏范围对原有支护方案进行修正,设计了补强支护方案,现场实测表明补强支护后巷道变形显著减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号