首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
In a first stage atmospheric leach in a typical Sherritt Ni-Cu matte leach process, a Ni-Cu-Fe-S Peirce Smith converter matte is contacted with recycled copper spent electrolyte (an aqueous copper sulphate/sulphuric acid solution) at 85 °C with the purpose of dissolving nickel, while simultaneously removing copper from solution. In the PGM industry, copper removal is also important because it serves as a leading indicator in the removal of Ir, Rh, and Ru from the spent electrolyte. The matte mainly consists of heazlewoodite, chalcocite/djurleite, a Ni-Cu alloy phase and inert spinel minerals (magnetite and trevorite). Nickel is leached from the matte by two mechanisms: (i) leaching by sulphuric acid and oxygen; and (ii) an anaerobic metal exchange reaction (cementation and metathesis) between cupric ions in solution and nickel in the matte, which is also responsible for the removal of copper from solution.This study investigates the oxidative and non-oxidative leaching of converter matte in a laboratory batch reactor, with attention specifically being given to the effects of initial copper and acid concentrations and their effects on leaching kinetics. Experimental conditions were varied based on a 2N experimental design. The availability of oxygen for acid-leaching reactions was found to be the most important factor influencing copper removal and nickel extraction. A 63% nickel extraction could be achieved during oxidative tests vs. 22% in a non-oxidative test. This also indicates that cementation did not take place to a significant degree and that nickel leaching mostly took place via leaching by acid and oxygen. It is suspected that the low degree of copper removal can be attributed to the solids/reactants ratio was employed in tests. The initial copper and acid concentrations did not have a significant effect on the rate of nickel extraction or the total amount of nickel extracted. The rate of copper removal was not significantly influenced by the initial copper concentration, but copper removal was affected by the initial acid concentration. In oxidative tests with high initial acid concentrations, the rate at which copper was leached from the matte was faster than the rate of cementation. The results suggest that operating under high initial acid conditions could interfere with copper removal with no significant benefit in terms of nickel extraction. The results allow the regression of rate expressions.  相似文献   

2.
Hydrometallurgical process routes are typically used for separation of platinum group metals (PGMs) from base metals in Ni-Cu converter matte. Nickel dissolution is primarily achieved in the first stage leach (high pressure or atmospheric leaching, or a combination of the two), which is followed by second stage high pressure sulphuric acid/oxygen leaching to dissolve copper and the remaining nickel. PGMs are recovered from the leaching residue, and their dissolution must hence be limited. The leaching of base metals in the first stage has been characterised, but there is a limited understanding of the behaviour of metals, and more specifically PGMs, in the second stage pressure leach. This research presents the results of laboratory work performed to investigate the kinetics of leaching in the second stage pressure leach. The influence of key operating parameters such as the temperature, pressure, and initial acid concentration on PGM dissolution was investigated.  相似文献   

3.
Cobalt is usually recovered as a by-product of copper and nickel processing, and only a small amount of cobalt is derived from laterites although a vast majority of cobalt resources in them. The exploitation of limonitic laterite containing high content of cobalt is becoming increasingly important. The mineralogy of a limonitic laterite ore was characterized by environmental scanning electron microscope (ESEM) and X-ray diffraction (XRD) in this paper. The results show that nickel occurs in goethite mainly, while cobalt is predominantly associated with manganiferous minerals. Thiosulfate is found to be able to selectively leach cobalt from limonitic laterite in the presence of sulfuric acid, and 91% Co, 22% Ni, 10% Fe are leached from an ore containing 0.13% Co, 1.03% Ni within the first 5 min at 90 °C under the conditions of 10 g/L sodium thiosulfate, 8% (w/w) sulfuric acid and 10:1 L/S ratio. The leaching kinetics of Mn and Co by acidic sodium thiosulfate solution can be characterized by the Avrami equation. In acidic solution, thiosulfate readily decomposes into sulfur and sulfur dioxide as intermediary reagents to reduce pyrolusite (MnO2) and goethite (FeOOH); therefore, nickel and cobalt associated with goethite and pyrolusite respectively are extracted due to reduction dissolution. Furthermore, cobalt is selectively leached over iron and nickel because pyrolusite is preferentially reduced by acidic thiosulfate rather than goethite. The novel process may give an alternative method to selectively recover cobalt as the primary product from limonitic laterites at atmospheric pressure.  相似文献   

4.
Temperatures in excess of 60 °C are required for efficient bioleaching of chalcopyrite. Within heaps, colonisation of the mineral with thermophilic archaea is important in reaching and maintaining these high temperatures. The effect of temperature and culture history on the attachment of Metallosphaera hakonensis, an extreme thermophilic acidophile identified as a key player in heap bioleaching, to sulfide concentrates and low-grade ore was investigated in shake flasks and packed beds. Attachment studies were conducted at 25 °C, 45 °C and 65 °C. The results show a clear relationship between increasing temperature and attachment efficiency for both suspended and packed bed systems. Attachment at 25 °C was low. Increasing the temperature to 45 °C improved attachment efficiency by between 50% and 100% while a further increase to 65 °C improved attachment by an additional 20-50%. Cells cultured on elemental sulfur as energy source prior to contacting showed 1.3 times greater affinity for the mineral concentrate than those cultured on sulphide mineral concentrates or ferrous sulphate. In contrast to previous studies using mesophilic organisms the selective attachment of Metallosphaera to sulfide minerals, relative to gangue, was less pronounced. Attachment efficiency was lower in the packed bed system which more closely mimicked flow through a heap. The cell surface properties surface charge and hydrophobicity as well as metabolic activity were investigated to provide insight into the observed phenomena. The data suggest that retention of thermophiles within the heap could be enhanced by a secondary inoculation following elevation of the temperature above 40 °C by the mesophilic pioneer species.  相似文献   

5.
The leaching step of an integrated hydrometallurgical process for the selective recovery of metals from polymetallic concentrates has been investigated. This concentrate has been produced by physical treatment of Fine Shredder Residues derived from a shredding plant processing a mixed feed of metallic scraps, waste electric equipments and end-of-life vehicles. Bacterially assisted leaching experiments have been carried out using a copper-adapted consortium of mesophilic bacterial strains. The influence of various operating conditions such as stirring speed, temperature (25-50 °C), pulp solids density (5-20%) and initial iron concentration (0-15 g/L) has been studied. Temperature and stirring speed have proved to be the most influential parameter regarding copper dissolution kinetics, while pulp solids density and initial iron concentration have been found to have a subordinate importance. In optimum conditions, 95% extractions of zinc and copper were achieved within 48 h. Bacterial presence has been found beneficial in terms of catalysing copper dissolution.  相似文献   

6.
在热力学理论分析基础上, 常压下采用盐酸浸出红土镍矿中镍、钴等有价金属, 探讨了有价金属溶出机理。结果表明;初始盐酸浓度8 mol/L, 浸出温度360 K, 固液比1∶4, 反应时间2 h, 镍、钴、锰浸出率分别达到94%, 61%和96%, 此时铁、镁浸出率为56%和94%。根据热力学计算和浸出机理分析可知, 红土镍矿在常压盐酸浸出过程中, 各主要矿相溶解先后顺序是;针铁矿>蛇纹石>磁铁矿>赤铁矿。  相似文献   

7.
This paper describes the experimental findings of the extraction of nickel and cobalt by high pressure acid leaching (HPAL) of a refractory limonitic nickel laterite ore from the Gördes region of Manisa in Turkey. By optimizing the basic HPAL process parameters: leaching at 255 °C with 0.30 sulfuric acid to ore weight ratio with a particle size of 100% −850μ for 1 h of leaching, it was found that 87.3% of nickel and 88.8% of cobalt present in the ore could be extracted into the pregnant leach solution (PLS). However, these extraction results were found to be relatively low compared with other similar studies. In order to understand the possible reasons for this relatively lower extraction, further investigations have shown that together with a problem related to the kinetics of the dissolution reactions, a persistent acid resistant refractory mineral present in this sample also limited the leaching process. Attempts were made with different additives to solve this problem. The effects of chemical additives such as HCl, Na2SO4, FeSO4, Cu+ and sulfur were tested and the effect of each addition on the degree of extraction of nickel and cobalt was determined.  相似文献   

8.
硫酸浸出赤泥中铁、铝、钛的工艺研究   总被引:4,自引:0,他引:4  
王琪  姜林 《矿冶工程》2011,31(4):90-94
采用硫酸作为浸出剂, 研究了赤泥中3种金属铁、铝和钛的浸出工艺。通过考察反应温度、反应时间、液固比、硫酸浓度、赤泥颗粒粒径、焙烧温度、焙烧时间对浸出率的影响, 确定了3种金属离子的最佳浸出工艺条件。实验结果表明, 将粒径为0.15~0.18 mm的赤泥颗粒于600 ℃下焙烧5 h后, 在温度为60 ℃, 硫酸浓度为12 mol/L, 液固比为5的条件下反应1 h, Fe、Al、Ti的浸出率分别为46.7%、63.3%和54.3%。此外, 实验还采用扩散控制的收缩未反应芯模型对浸出反应的动力学进行了研究, 通过对实验数据的模拟分析, 得到了3种金属的浸出动力学方程。  相似文献   

9.
Nickel laterites represent the major ore reserves of this base metal present in the lithosphere. However, processing these ores by conventional technologies involves considerable energy or reagent expenditure and consequently is less cost-effective than extracting nickel from sulfide ores. Biological options, using metal-complexing organic acids and mineral acids generated by fungi and bacteria, have been investigated but generally found to be ineffective in terms of extraction dynamics or yields. We have examined the possibility of using bacteria that can bring about the reductive dissolution of ferric iron minerals and thereby facilitate the extraction of nickel from a lateritic ore at relatively low (<30-45 °C) temperatures.Four species of iron-reducing acidophilic bacteria were screened for their abilities to solubilise nickel from a limonitic laterite ore in which the major iron mineral present was goethite. One of these (Acidithiobacillus ferrooxidans) was selected for further study only the basis of it being able to use a cost-effective energy source (elemental sulfur) to mediate the dissolution of goethite at mildly acidic conditions (pH < 2). Cultures were set up in 2 L bioreactors, maintained at pH 1.8 (±0.1) and 30 °C, and initially aerated (to promote growth of the bacteria on sulfur) and then switched to anaerobic conditions when nickel laterite ore (crushed to <6 mm, with a nickel grade of 0.5%) was added. Over 70% of the nickel present in the ore was solubilised within 14 days, and solubilised metals remained in solution due to the low pH of the leachate. In contrast, only 10% of the nickel was solubilised (by non-reductive acid dissolution) when the cultures were continuously aerated. The results suggest that biological processing of limonitic nickel laterites is technically feasible and, more generically, that reductive dissolution can be used to bioprocess ferric oxide mineral ores.  相似文献   

10.
Activation pretreatment of Cr-containing limonitic laterite ores by Na2CO3 roasting to remove Cr and Al, as well as its effect on Ni and Co extraction in the subsequent pressure acid leaching process were investigated. X-ray diffraction (XRD), thermogravimetric (TG), and scanning electron microscopy/X-ray energy dispersive spectroscopy (SEM/XEDS) techniques were used to characterize the laterite ores and the water leaching residues of alkali roasting and found that goethite is the major Ni-bearing mineral and chromite the minor one. Alkali-roasting pretreatment breaks the mineral lattices of the laterite, exposing their Ni and Co, which leads to higher extraction of these two metals under milder operation conditions in the subsequent pressure acid leaching process. Experimental results showed that the leaching of Cr and Al were up to 99 wt% and 80 wt%, respectively, under optimal alkali roasting and water leaching conditions. Compared with the direct pressure acid leaching of the raw laterite ores, leaching of Ni and Co increased from 79.96 wt% to 97.52 wt% and 70.02 wt% to 95.33 wt%, respectively, after alkali-roasting activation pretreatment was performed. Meanwhile, the grade of acid leaching iron residues increased from 55.31 wt% to 62.92 wt%, and these residues with low Cr content could be more suitable as the raw materials for iron-making.  相似文献   

11.
Different process options for the bioleaching of nickel-copper containing sulphide concentrates were evaluated. Tests in continuously operated reactor systems showed >98% nickel extractions over a range of temperatures, whereas for copper occurring as chalcopyrite, extractions of >95% could only be achieved at 70 °C. During further optimisation of the process the effects of process parameters such as grind size, residence time, redox potential and feed solids concentration on the leach kinetics, metal extractions and performance of both moderate thermophile and thermophile cultures were addressed. Redox control in the first-stage reactor of thermophilic systems resulted in considerably faster copper leach rates and extractions of up to 95% could be achieved at increased feed concentrations and coarser grind sizes. High redox levels in the secondary reactors ensured >98% nickel recoveries. These operating conditions and control strategies have the potential to increase the rates of nickel and copper extractions to the extent that leaching times could be considerably reduced.  相似文献   

12.
《Minerals Engineering》2002,15(11):853-857
Oxygen is an essential element in numerous hydrometallurgical leaching processes where it acts as a primary or a secondary oxidant in the dissolution of sulphic concentrates. A common acidic leaching medium is sulphuric acid. It was found crucial to define experimentally the solubility and the rate of mass transfer of oxygen in various sulphuric acid environments prior to direct leaching experiments of sulphuric zinc concentrates, and a laboratory scale equipment was developed for the analysis of oxygen concentrations in aqueous acid media. This paper discusses the solubility and dissolution of oxygen as a function of temperature and concentration of sulphuric acid. Also, the effect of temperature (25–55 °C), gas flow rate (0.75–2.25 l/min) and acid concentration (up to 2 M) on the mass transfer coefficient kLa between gas and liquid is evaluated.  相似文献   

13.
An innovative technology for processing saprolitic laterite ores from the Philippines by hydrochloric acid atmospheric leaching and spray hydrolysis is proposed. The factors that affect the hydrochloric acid atmospheric leaching of the laterite ores and spray hydrolysis of the atmospheric acid leach solution are investigated. Experimental results show that the leaching of Ni, Fe, and Mg is 98.9 wt%, 97.8 wt%, and 80.9 wt%, respectively, under optimal acid leaching conditions. The hydrolysis of Ni and Fe by the atmospheric acid leach solution approaches 100 wt% at the temperature range of 450–500 °C. Characterization results show that a serpentine mineral, nominally Mg3Si2O5(OH)4, is the major component and goethite, FeO(OH), is the minor one in the laterite ores. Treatment by hydrochloric acid atmospheric leaching breaks the mineral lattices of the laterite ores and makes amorphous silica the primary product in the atmospheric acid leach residue. The grade of Ni in the hydrolyzate increases to 4.55%. The hydrolyzate with high Ni content can be utilized for ferro-nickel production.  相似文献   

14.
以印尼某地红土镍矿为原料,考察了浸出时间、浸出温度、硫酸浓度、液固比等因素对硫酸常压浸出镍、铁的影响。结果表明,硫酸浸出红土镍矿的适宜工艺参数为: 初始硫酸浓度300 g/L、液固比6∶1、搅拌速度300 r/min、浸出温度85 ℃、浸出时间240 min,此优化条件下红土镍矿中Ni浸出率97%,Fe浸出率83%。对浸出渣进行XRD、SEM分析表明,红土镍矿晶型较稳定,浸出后形貌无较大变化; 浸出渣主要成分为铁氧化物、硅氧化物和铁酸镍、铁酸镁。  相似文献   

15.
Acidic sulphate leaching of chalcopyrite concentrates in presence of pyrite   总被引:2,自引:0,他引:2  
Copper concentrates with mineralogy dominated by chalcopyrite have slow leaching kinetics at atmospheric pressure in sulphate media because of the formation of passivation layer on its surface during the leaching. To enhance the leaching rate of the copper concentrate, pyrite was added to act as a catalyst. Pyrite and copper sulphide minerals then form a galvanic cell which increases both the copper leaching rate and yield. Effect of parameters such as solution redox potential, temperature, initial acid concentration, solids content, total initial iron concentration and pyrite to copper sulphide minerals mass ratio were investigated. Mineralogical analyses by XRD were performed on selected leach residues and the feed materials. A copper recovery higher than 80% in 24 h was achieved at a redox potential of 410 mV vs Ag, AgCl, a temperature of 85 °C, 15 g/L of initial acid concentration, a solid content of 7.8% (w/v), a total initial iron concentration 5 g/L and pyrite to copper sulphide minerals mass ratio 2:1. XRD patterns on leach residues showed that candidates for surface passivation, i.e. jarosite and elemental sulphur, were formed at high total initial iron concentrations.  相似文献   

16.
The research work presented in this paper determined the optimum conditions at which nickel and cobalt could be obtained at maximum efficiency from the column leach liquor of the lateritic nickel ore existing in Gördes region of Manisa in Turkey by performing effective hydrometallurgical methods. This column leach solution was initially neutralized and purified from its basic impurities by a two-stage iron removal process, nickel and cobalt were precipitated in the form of mixed hydroxide precipitate from the purified leach solution by a two-stage precipitation method called “MHP” and a manganese removal process was performed at the optimum conditions determined experimentally. By decreasing manganese concentration with this process to an acceptable level yielding at most 10% Mn in hydroxide precipitate, it was possible to produce a qualified MHP product suitable to the current marketing and standard conditions. The experiments conducted showed that by maintaining recycle leaching with sulfuric acid at which 95% of Ni-Co could be recovered from the precipitates, about 81% of Ni and 63% of Co in the lateritic nickel ore (9.72 kg Ni/ton of ore and 0.28 kg Co/ton of ore) could be extracted as mixed hydroxide precipitate by MHP process.  相似文献   

17.
This study investigates the isothermal, batch, H2SO4 acid leaching behaviour of siliceous goethitic (SG) nickel (Ni) laterite ore and its links to pulp rheology. Specifically, the effect of feed ore particle size (−0.2 vs −2.0 mm), leaching temperature (70 vs 95 °C) and pulp rheology on Ni and pay metal, cobalt (Co) extraction kinetics and yield was studied for 4 h on 40 wt.% solid dispersions at pH 1. The leaching behaviour was distinctly incongruent, reflecting the disproportionate proliferation of major gangue mineral’s constituent elements (e.g., Fe, Al, Mg, Na, Si) alongside Ni and Co in the pregnant leach solution. At 70 °C, Ni/Co extraction rates were notably lower (<20%) in contrast with 95 °C where a significant increase in Ni/Co extraction to 78/77% and 74/77%, respectively, for the −0.2 and −2.0 mm feeds occurred. The slurries displayed a non-Newtonian, shear thinning Bingham plastic rheological behaviour of which the viscosity and shear yield stress increased markedly in the course of 4 h leaching. The pulp viscosity and shear yield stress were greater at lower temperature than at higher temperature and they were also greater in slurries with finer than coarser feed particles. The dynamic pulp rheology, however, had no marked effect on the overall Ni/Co extraction rates. Whilst the feed ore particle size had no remarkable impact on overall Ni/Co extraction, it led to noticeably higher acid consumption and enhanced slurry rheology in the finer sized ore. The mechanism of leaching the SG ore followed a two-stage, first order chemical reaction-controlled shrinking core model, the kinetics of which gave higher rate constants and lower activation energies for the release of Ni, Co, Fe and Mg in the first stage. A faster leaching process involving more reactive minerals during the first 30 min is envisaged to be followed by leaching of the more refractory minerals.  相似文献   

18.
In this study, atmospheric acid leaching behaviour of siliceous goethitic nickel (Ni) laterite ore is investigated. Specifically, the effect of −200 μm feed solid loading (30 vs. 45 wt.%) and temperature (70 vs. 90 °C) on leach kinetics, acid consumption capacity and Ni and cobalt (Co) extraction was studied under isothermal, batch (4 h) leaching conditions at pH 1. Incongruent leaching was observed for constituent elements reflecting slow but steady release of value (Ni and Co) and some of gangue metals such as Fe, Mg and Al accompanied by faster and sharp release of Na and Si. Higher temperature and lower pulp solid loading, both led to a 40–50% increase in overall Ni and/or Co extraction and higher acid consumption. At 70 °C and 45 wt.% solid loading, Ni/Co extraction after 4 h was the lowest (∼14/16%) whilst the highest extraction (∼67/56%) was observed at 90 °C and 30 wt.% solid loading. Temperature appeared to have dramatic influence on Ni/Co and other impurity metals’ extractions revealing the chemical reaction controlled nature of the leaching. Higher solid loading and longer leaching time also both slowed down the leach kinetics. A two-stage chemical reactions-controlled leaching mechanism involving a faster initial leaching kinetics followed by a slower leaching at lower rate constants and higher activation energies was established for release of Ni, Co, Fe and Mg. The mechanism reflects the fast leaching of reactive host mineral phases (e.g., clays and Mg–silicates) during first 30 min followed by slow leaching of more refractory mineral phases (e.g., goethite and quartz) during the rest of leaching period. The findings provide a greater understanding for enhanced atmospheric acid leaching process of siliceous goethitic laterite ores.  相似文献   

19.
B. B. Kar  Y. V. Swamy   《Minerals Engineering》2000,13(14-15):1635-1640
Nickel bearing chromitiferous overburden of Sukinda region, Orissa, India, was pugged with sulphuric acid and subjected to roasting in two stages. Various operating parameters, such as roasting temperature, time, acid concentration and role of additives were studied. Addition of moisture, during pugging, helped in the formation of insoluble ferric hydroxy sulphate that maintains the equilibrium of SO2/SO3 partial pressure. The double stage roasting improved the nickel extraction over the single stage isothermal roasting of the material at 700°C. An extraction of 85% nickel with 2–3% iron could be achieved at a temperature of 700°C when roasted for 15 mins, 25 wt% sulphuric acid and 20 wt% moisture in two stages. The nickel extraction was improved a further 8–10% by the addition of alkali and alkaline earth metal salts. The role of additives during roasting was also investigated.  相似文献   

20.
Nickel converter mattes are complex metallurgical solutions of Ni, Cu, S, Fe and O along with low concentrations of many other elements including Co, Pb and PGEs. Studies on how such complex mixed solutions evolve upon cooling may contribute towards an improved understanding of matte solidification. Liquidus and primary phase equilibria were calculated for Cu–Ni–S ternaries including fixed iron and cobalt concentrations. True liquid matte starting compositions and calculated assays were subsequently superimposed on relevant Cu–Ni–S_FeCo ternary systems. Multiphase cooling equilibria were also calculated for variable Cu–Ni–S–Fe–Co–O matte systems. In addition, actual industrial mattes were analysed using automated mineralogy, electron probe microanalysis and field emission scanning electron microscopy.The effect of the end composition of the ternary systems at fixed iron and cobalt concentrations on the liquidus temperature range has been quantified. The liquidus temperature range is lowered when the fixed iron and cobalt concentration decreases. The solidification pathway of oxygen-free liquid matte has been estimated. Moreover, it has been shown that variations in the starting composition of oxygen-free matte alter the path of solidification towards the eutectic. The examination of multiphase cooling equilibria for variable Cu–Ni–S–Fe–Co–O liquid phase systems provided a quantitative understanding of solidification processes to within ±2.5 °C. The analysed nickel and copper-sulphide phase structures have shown to exhibit chemical non-equilibrium within high and low iron matte. It can be concluded that the present study has provided a coherent insight into nickel converter matte solidification processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号