首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
魏茜 《矿冶工程》2013,33(6):46-49
对某低品位难选氧化铁矿进行了阶段磨矿-弱磁-强磁-阴离子反浮选试验研究。首先在磨矿粒度-0.074 mm粒级占65%的条件下通过预先作业抛尾, 因矿石中有用矿物嵌布不均匀, 粒度较细, 选择对粗精矿进行再磨。再磨后的强磁精矿单独反浮选得到浮选精矿与再磨弱磁精矿混合得到最终铁精矿。全流程试验获得了铁品位为61.53%、铁回收率为63.31%的混合铁精矿。  相似文献   

2.
邓丽红 《中国矿业》2021,30(6):159-164
某铁矿含铁25.78%、含铜0.24%、含锌0.33%,铁矿物品位低、嵌布粒度细,采用一次性磨矿-磁选的选矿工艺,难以获得品位大于60%的铁精矿,伴生的低品位铜、锌矿物也一直未能有效回收。本文采用再磨-弱磁选-浮选的选矿工艺,对该矿石进行了铁、铜、锌的综合回收试验研究。结果表明:采用磨矿细度-0.074mm含量75.25%、再磨细度-0.043mm含量95.30%的铁粗精矿再磨-磁选工艺回收铁矿物;石灰、水玻璃、硫化钠为调整剂,DY1和乙黄药为组合捕收剂浮选回收铜矿物;硫酸铜为活化剂、丁黄药和2~#油为组合捕收剂浮选回收锌矿物,获得了铁精矿品位66.02%、回收率80.22%,铜精矿品位19.03%、回收率55.60%,锌精矿品位48.20%、回收率65.88%的试验指标,使该矿石中的铁矿物、伴生铜矿物和锌矿物均得到了有效的回收,为提高难选低品位铁资源综合利用率的研究提供了技术借鉴。  相似文献   

3.
应用X射线衍射、化学多元素、粒度和金属分布、光学显微镜等研究分析方法,对齐大山反浮选尾矿的化学元素组成、粒度分布特征及单体解离度特征等理化性质进行了系统研究,并对该尾矿进行了再选研究。结果表明:尾矿中铁矿物以赤铁矿为主,主要富集于细粒级中,主要脉石矿物为石英。再选试验采用脱泥-筛分-重选-磁选-反浮选联合工艺对尾矿进行回收,反浮选尾矿经过脱泥-筛分后再进行螺旋溜槽重选可获得铁品位为65.48%、铁回收率为16.88%的重选精矿,铁品位为30.45%、铁回收率为54.51%的磁选精矿给入反浮选作业;选用NaOH为调整剂、淀粉为抑制剂、CaO为活化剂和LKY为捕收剂,经过一次粗选、两次精选,可获得铁品位65.36%,铁回收率为31.04%的反浮选精矿。最终实现了齐大山反浮选尾矿中铁矿物的有效回收。  相似文献   

4.
针对某风化型钒钛铁矿中铁矿物与钛矿物嵌布关系十分密切、密度和比磁化系数接近、选矿难以分离的特点, 采用选冶联合工艺进行了回收试验研究。结果表明, 利用磁选实现了钒钛铁矿物的预先富集, 对钒钛铁粗精矿进行闪速磁化焙烧拉大了铁矿物与钛矿物的比磁化系数差距, 为选矿分离创造了条件。选冶联合工艺全流程试验取得了TFe品位61.06%、V2O5含量1.03%, TFe和V2O5回收率分别为73.12%和76.43%的含钒铁精矿和TiO2品位50.96%、回收率40.40%的钛精矿。该工艺实现了钒、钛、铁的综合回收。  相似文献   

5.
国外某铁镍钴矿石中主要有价元素为铁、镍和钴,铁主要以磁铁矿形式存在,镍主要以自然镍的形式存在,钴主要以硫化钴矿物的形式存在。为了确定该矿石的合理开发利用工艺,对磁铁矿进行了弱磁选工艺条件研究,基于镍、钴矿物与脉石矿物间的可浮性差异和密度差异,进行了浮选和重选效果对比试验,并根据条件试验结果进行了全流程试验。结果表明,矿石在磨矿细度为-0.074 mm占61%的情况下,采用1粗1精弱磁选(磁场强度分别为119.43、95.54 k A/m)流程回收铁,选铁尾矿采用摇床1粗1精重选流程回收镍、钴,最终获得了铁品位为66.99%、铁回收率为89.17%的铁精矿,以及钴品位为5.16%、钴回收率为74.77%、镍品位为37.99%、镍回收率为84.00%的镍钴混合精矿。磁重联合工艺实现了该矿石的高效开发利用。  相似文献   

6.
陕西某磷矿石矿物成分复杂,主要有用矿物有磷灰石、稀土、磁铁矿和长石,长石精矿质量因被氧化铁严重污染而受到影响。针对该矿石的性质特点进行了选矿试验研究,最终原矿采用磨矿—弱磁选选铁—铁尾矿浮选选磷(稀土)—磷尾矿反浮选除杂—长石粗精矿强磁选除杂的联合工艺流程,可获得铁品位TFe 60.10%、铁回收率TFe 16.04%的铁精矿;品位P_2O_5 25.22%、回收率P_2O_5 81.10%的磷精矿;品位K_2O 2.58%、Na2O 5.62%,回收率K_2O 81.04%、Na_2O 83.82%的长石精矿,较好地实现了该非金属矿的综合回收。  相似文献   

7.
新疆某金矿石金品位2.00 g/t,砷含量较低,硫和铁含量较高,金矿物主要赋存于硫化矿和脉石矿物中。为有效回收矿石中的金,进行浮选工艺优化试验。结果表明,相比金粗精矿不再磨工艺,选取丁铵黑药为金矿物捕收剂、石灰为砷矿物抑制剂、氯化铵为金矿物活化剂,原矿磨矿(-0.074 mm 75%)—2粗2扫—金粗精矿再磨(-0.025 mm 85%)—3次精选工艺闭路流程可获得金品位40.63 g/t、回收率70.70%,含砷0.07%、砷回收率2.71%的合格金精矿,说明金粗精矿再磨浮选工艺适宜作为该金矿石的选别工艺。  相似文献   

8.
某含细粒磁黄铁矿铁锌矿石选矿工艺研究   总被引:1,自引:0,他引:1  
某铁锌矿石中可选矿回收的目的矿物为磁铁矿和闪锌矿,但部分闪锌矿中包裹有磁性较强、粒度较细的磁黄铁矿,处理不当易导致铁精矿中硫含量超标或影响锌精矿品位。为了给该矿石的开发提供技术支撑,对其进行了选矿工艺研究。结果表明:采用先浮选锌后弱磁选铁的原则流程,可以解决铁精矿硫超标问题;将锌粗精矿再磨至-400目占85%后再精选,可以保证锌精矿品位。试验最终获得了锌品位为48.74%、锌回收率为86.92%的锌精矿和铁品位为63.29%、铁回收率为90.58%、硫含量为0.29%的铁精矿。  相似文献   

9.
铜陵有色某矿山为解决铜(含金银)、铁回收后的选硫精矿品质问题,在小型条件试验基础上进行了连选选硫试验。结果表明:①磁选尾矿中金属矿物主要为黄铁矿、磁黄铁矿,黄铁矿、磁黄铁矿的解离度均在90%左右,粒度主要分布在10~60μm;脉石矿物主要是石英,其次为方解石、石榴子石等。②磁黄铁矿可浮性比黄铁矿差,且与易浮脉石矿物可浮性相近,是造成浮选工艺很难获得高品质的硫精矿的原因。根据黄铁矿与磁黄铁矿可浮性差异,以及磁黄铁矿和脉石矿物磁性的差异,采用分步浮选、中矿强磁选、强磁选精矿浮选工艺连选,获得了含硫40.36%、含铁49. 25%,全硫+铁品位为89.61%,硫回收率为66.78%的总硫精矿,该精矿经烧酸之后,硫酸烧渣铁品位可达65%,大大提高了硫酸烧渣的附加值。③产品镜下分析表明,磁选尾矿中主要有用矿物为黄铁矿和磁黄铁矿;硫精矿1中金属矿物以黄铁矿为主;精选1尾矿和精选2尾矿中金属矿物主要是磁黄铁矿;硫精矿2中金属矿物以磁黄铁矿为主。这表明分步浮选、中矿强磁选、强磁选精矿浮选工艺是回收磁选尾矿中黄铁矿和磁黄铁矿的合理工艺。④本次连选试验的尾矿2(即强磁选尾矿)含硫较高,达14.53%,以非磁性磁黄铁矿为主,后续应开展该部分含硫矿物的回收研究。  相似文献   

10.
针对现阶段高铝铁矿石选别后铁精矿中含铝过高的问题,东北大学研制了一种新型、高效的两性螯合捕收剂DTA-2,以某悬浮焙烧后磁选铁精矿为研究对象,进行提铁降铝反浮选试验。结果表明:在常温,自然pH条件下,以DTA-2为捕收剂,淀粉为抑制剂,经1粗1精1扫反浮选流程试验,可以获得精矿TFe品位66.80%、Al2O3品位3.26%的指标。对浮选精矿产品进行分析发现:褐铁矿内部结构相对松散,其中包裹脉石矿物较多;粒度较大氧化铁颗粒周围黏连微粒(多小于1 μm)以氧化铝为主的脉石矿物,微细粒的铁氧化物和以氧化铝为主的脉石矿物集合成磁性聚合体,造成精矿含杂;粒度较粗的氧化铝矿物颗粒内部有微粒(小于1 μm)弥散状氧化铁颗粒,磁选精矿中石英、高岭石、云母、长石矿物与氧化铁矿物连生或微粒单体夹带进入浮选精矿造成精矿杂质含量较高。通过浮选的方法解决了悬浮焙烧后磁选铁精矿含铝过高的实际问题。试验结果对高铝铁矿石的提铁降铝研究具有借鉴意义。  相似文献   

11.
甘肃某微细粒嵌布磁铁矿选矿试验研究   总被引:1,自引:0,他引:1  
甘肃某铁矿虽然以磁铁矿为主,但由于磁铁矿嵌布粒度微细,磁铁矿单体解离度很低。单一磁选流程磨矿粒度-400目含量达85%,精选后精矿品位57%左右,精矿品位不达标。在原矿经过粗碎干选后,入选品位达到32.28%,经过磁选-重选联合流程,磨矿粒度-300目含量达85%,最高可获得铁精矿品位66.16%,产率32.45%,回收率71.69%的较好指标。  相似文献   

12.
利用工艺矿物学的方法对原矿铁物相组成、矿物嵌布粒度、脉石种类以及矿物嵌布情况等进行了研究。研究结果表明,矿石中的主要铁矿物为磁铁矿和赤(褐)铁矿,赤(褐)铁矿的含量分布由采场中部向两边呈现明显的增高趋势,磁铁矿的含量分布由采场中部向南呈逐渐降低趋势;铁矿物嵌布粒度以相对中粒级为主,全区皆有分布,相对粗粒级主要分布在采场的北部,相对细粒级矿石主要分布在矿体与围岩的接触部位;难解离难选型矿石主要分布在-30 m台阶,易解离易选型矿石主要分布在-42 m台阶,这些分布规律,可以半定量化地指导现场生产。  相似文献   

13.
攀枝花某铁矿原矿石中有用矿物为磁铁矿,其磁性铁分布率为79.53%,有少量的赤铁矿、褐铁矿,钒钛含量极低无法进行物理选别,脉石矿物主要为云母、长石等硅酸盐矿物,矿石中的有用矿物因嵌布粒度细导致极难回收利用。为了高效开发利用该类矿石资源,经磨矿、磁选条件实验及重选探索实验,确定了单作业较佳工艺参数,经工艺流程实验,确定采用阶段磨矿、阶段选别、单一磁选工艺处理该矿石。工艺流程实验结果表明,在原矿石中铁品位36.78%,经三次磨矿、五次磁选,在-43 μm含量98%的最终磨矿粒度条件下,最终获得铁精矿品位为65.50%,产率41.77%,金属回收率为74.39%的铁精矿,为有效利用细粒嵌布类型攀枝花铁矿提供了新的参考工艺。   相似文献   

14.
七宝山铁尾矿还原焙烧—弱磁选回收铁试验   总被引:1,自引:0,他引:1  
江西七宝山铁尾矿成分复杂,铁品位达38.74%,主要铁矿物为针铁矿。为了高效回收其中的铁,采用还原焙烧—弱磁选工艺进行了试验研究。结果表明:提高煤粉添加量、延长焙烧时间、提高焙烧温度均有利于提高还原焙烧产物中铁的金属化率和金属铁粉的指标;在煤粉添加量为15%,还原焙烧温度为1 250℃,还原焙烧时间为60min,焙烧产物磨至-325目占58.80%,弱磁选磁场强度为88 kA/m情况下,可获得铁品位为88.80%、铁回收率为92.28%的金属铁粉。还原焙烧产物的微观分析表明:在还原焙烧初期,焙烧产物中生成了大量微细粒铁颗粒,随着还原焙烧时间的延长,细小的铁颗粒不断兼并、集聚,60 min后铁颗粒不再明显集聚、长大;随着还原温度的提高,焙烧产物中的铁颗粒显著长大,在1 250℃情况下,铁颗粒长至100μm左右;长大的铁颗粒中包裹细小脉石颗粒是造成金属铁粉铁品位难以进一步大幅度提高的主要原因。  相似文献   

15.
顾兆云 《现代矿业》2016,32(10):54-57
为充分利用河南某铁矿资源,对该铁矿石进行工艺矿物学研究。结果表明:①该铁矿石铁品位34.31%,有害元素硫、磷含量较低,属酸性氧化铁矿石,具有回收价值的铁矿物为磁铁矿和镜铁矿,占总铁的88.63%;②磁铁矿呈中等稠密-稀疏或星散浸染状嵌布在脉石中,嵌布粒度较粗,多在0.3~1.5 mm,+0.3 mm粒级占96.79%;镜铁矿主要以中等稠密浸染条带状和稀疏-星散浸染条带状产出,大多呈定向排列特征,粒度细小,-0.30 mm粒级占57.14%;磨矿细度 -0.075 mm 90.33%时,镜铁矿单体解离度在96%以上;③脉石矿物以石英和白云母为主,与铁矿物共生关系简单,为选别创造了良好条件。推荐采用磨矿-弱磁选-强磁选工艺回收磁铁矿和镜铁矿,但应加强对微细粒级的尘粒状镜铁矿的回收,以避免尾矿中铁含量偏高。该矿石工艺矿物学研究结果可为下一步的选矿工艺提供理论支持和技术指导。  相似文献   

16.
高春庆 《金属矿山》2016,45(12):94-99
某铁矿石主要有用铁矿物为磁铁矿但嵌布粒度微细,选别比较困难。为了给该类矿石的经济高效开发利用提供技术依据,进行了原矿筛分分级-干式磁选-粗粒湿式磁选-三段阶段磨矿-弱磁选和原矿筛分分级-干式磁选-粗粒湿式磁选-两段阶段磨矿-磁选-细筛分选-筛下磁选柱精选-中矿再磨-磁选两个工艺流程试验。对比试验结果表明,采用原矿筛分分级-干式磁选-粗粒湿式磁选-两段阶段磨矿-磁选-细筛分选-筛下磁选柱精选-中矿再磨-磁选工艺流程在最终磨矿粒度为-0.043 mm 80%时,可以获得精矿产率为20.20%,铁品位为65.48%,其中磁性铁品位为64.78%,铁回收率为58.15%,磁性铁回收率为94.72%的选别指标。  相似文献   

17.
为了更好地指导甘肃某铁矿石的选矿试验,对该矿石进行了工艺矿物学研究。结果表明:①铁品位为37.89%的铁矿石为半自熔性、低硫磷磁铁矿石,有回收价值的铁矿物为磁铁矿,磁性铁占总铁的79.31%。②矿石的主要构造类型为块状构造,其次为浸染状构造和条带状构造;矿石的主要结构类型为他形-半自形粒状结构、包含结构。③以较粗粒嵌布(0.045~0.2 mm)的磁铁矿约占65%,这些磁铁矿颗粒大多被角闪石和石英颗粒分割;粒度为0.025~0.045 mm的细粒嵌布的磁铁矿约占20%,大多呈稀疏和稠密浸染状分布在脉石矿物中;微细粒中,嵌布粒度为0.01~0.025 mm和-0.01 mm的磁铁矿分别约占10%和5%。因此,该矿石中的磁铁矿宜采用干式预选抛废-阶段磨矿阶段弱磁选工艺回收,并应在坚持能收早收、减少磁铁矿过磨的基础上,加强-0.025 mm微细粒磁铁矿的回收,以确保磁铁矿的回收率。  相似文献   

18.
马驰  卫敏  卞孝东  王守敬 《金属矿山》2016,45(3):103-106
为配合山东某大型岩浆分异型钛铁矿资源的开发,对有代表性矿石进行了工艺矿物学研究。结果表明:①该钛铁矿中主要有用金属矿物为钛铁矿和磁铁矿,次要含钛矿物为榍石;脉石矿物主要是角闪石和辉石。②矿石中粗粒钛铁矿多与磁铁矿和榍石紧密共生,三者集合体的粒度主要集中在0.5~0.1 mm,细粒、微细粒钛铁矿和榍石呈固溶体分离结构多分布在辉石、角闪石和黑云母中,一般粒度小于0.004 mm。③矿石中角闪石、辉石等含钛矿物和钛铁矿、榍石极微细粒呈出熔结构产出将造成TiO2回收率较低。④多达54.42%的铁赋存在硅酸盐、碳酸盐和金属硫化物中将造成铁回收率较低。因此,该矿石属难选钛铁矿石。  相似文献   

19.
袁家村铁矿氧化矿石可选性研究   总被引:1,自引:0,他引:1  
胡义明  韩跃新 《金属矿山》2012,41(10):65-69
为了给袁家村铁矿氧化矿石高效选矿工艺的深入研究提供基础资料,对该矿3种主要氧化矿石石英型氧化矿、石英-镜铁矿型氧化矿、闪石型氧化矿进行了可选性试验。结果表明:石英型和石英-镜铁矿型氧化矿的可选性相对较好,在-0.037 mm占85%的最终磨矿细度下,通过弱磁选-高梯度强磁选-阴离子反浮选阶段磨选,可以获得铁品位分别为65.65%和65.23%的铁精矿,铁回收率分别为78.03%和79.45%。但闪石型氧化矿的可选性很差,采用常规物理选矿方法难以分选,须开展磁化焙烧或深度还原等方法的研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号