首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 171 毫秒
1.
为给齐大山含碳酸盐铁矿石选矿利用提供理论支持,对矿石的化学组成、矿物组成、矿石的结构构造、矿物产出形式、嵌布特征及嵌布粒度等进行了详细研究。结果表明:矿石中的铁主要赋存于菱铁矿、赤铁矿和磁铁矿中,主要的脉石矿物为石英和白云石;磁铁矿与赤铁矿共生关系密切,大部分赤铁矿由磁铁矿氧化蚀变生成,且嵌布粒度较细;菱铁矿与白云石、石英紧密连生,主要以自形-半自形的粒状集合体产出,粒度粗大;菱铁矿和赤铁矿-磁铁矿在大于0.1 mm粒级的分布率分别为92.90%、15.00%。当矿石粒级为-0.053 mm时,铁矿物单体解离度达到60%以上。矿石的工艺矿物学特征表明,矿石属于难选铁矿石。  相似文献   

2.
为了提高西石砬子赤褐铁矿选别效果,通过化学多元素分析、XRD分析、铁物相分析等手段,对有代表性的矿石进行了系统的工艺矿物学研究。结果表明:①齐大山西石砬子赤褐铁矿TFe品位27.88%,主要 脉石成分SiO2含量为55.65%,有害成分P、S含量分别为0.006%、0.005%。②矿石中金属矿物主要为赤铁矿和磁铁矿,褐铁矿少量、黄铁矿微量;非金属矿物主要为石英,此外,还有少量绿泥石和白云母。矿石中的铁 主要为赤、褐铁矿,其次为磁性铁。③矿石结构为自形—半自形晶结构、假象结构、残余结构及交代结构;矿石构造主要为条纹状构造和浸染状构造。④矿石中原生赤铁矿与磁铁矿相互嵌布,磁铁矿氧化蚀变生成假 象赤铁矿,次生赤铁矿呈斑点状、细脉状、网脉状和蛛丝状分布在磁铁矿中。赤铁矿与磁铁矿呈不混溶连晶颗粒,二者彼此难以解离,可一起回收。矿石中少量褐铁矿呈细脉状填充在赤铁矿粒间及内部,与赤铁矿的 嵌布关系复杂。⑤石英主要以自形粒状集合体产出,嵌布粒度细,粒间嵌布有少量细粒绿泥石、白云母。⑥磁铁矿和赤铁矿以中粒嵌布为主,细粒级含量大,-0.038 mm粒级中分布率高达20.22%,较难完全单体解离, 易流失于尾矿中,回收难度大。  相似文献   

3.
辽宁某深部铁矿石工艺矿物学特性研究   总被引:1,自引:0,他引:1  
刘杰  王越  韩跃新  李艳军 《金属矿山》2014,43(12):79-84
辽宁某地发现大型深部铁矿体,为了开发利用该矿体,对其进行了工艺矿物学研究。结果表明,矿石中主要含铁矿物为赤铁矿,少量磁铁矿、镁铁矿,微量黄铁矿;铁主要赋存于赤铁矿和磁铁矿中,为选矿回收的主体矿物。赤铁矿矿物含量为32.86%,平均含铁品位69.80%;磁铁矿矿物含量为7.12%,平均含铁品位70.53%,由此计算得铁精矿的理论品位应该达到69.13%,理论回收率为98.19%。赤铁矿主要以自形、半自形晶粒状赋存于石英、白云石等脉石矿物中;磁铁矿常以微细粒形式包裹在赤铁矿中,呈交代残余结构,提高了赤铁矿磁性,这有利于赤铁矿磁选回收。赤铁矿嵌布粒度一般为0.02~1 mm,但大于0.5 mm的赤铁矿很少,大多数赤铁矿粒度小于0.1 mm。磁铁矿粒度一般在0.1 mm以下,大多数集中在0.02~0.05 mm之间。  相似文献   

4.
白云鄂博云母型铁矿石中TFe品位为17.48%,稀土REO品位为2.46%。矿石中矿物组成复杂,含铁矿物主要是磁铁矿和赤铁矿,含有少量铌铁矿、黄铁矿等,稀土矿物以氟碳铈矿和独居石为主。矿石构造主要由黑云母定向排列而成的片状构造、斑杂状构造及浸染状构造;矿物主要为自形-半自形粒状结构、他形粒状结构、尖角状结构、交代残余结构、细脉状结构。磁铁矿多呈半自形至他形粒状变晶结构形式出现,部分呈角砾状集合体与云母共生;赤铁矿多呈半自形和他型粒状结构,也有部分赤铁矿呈微细粒粒状嵌布在脉石矿物中;氟碳铈矿和独居石呈粒状,与周边其它矿物紧密共生、镶嵌关系复杂。磁铁矿和赤铁矿的嵌布粒度不均,氟碳铈矿和独居石的嵌布粒度较细,部分细粒铁矿石和稀土矿物嵌布在脉石矿物中,部分铁矿石中也含有细粒稀土矿物。磨矿细度-0.074 mm占90%下磁铁矿、赤铁矿、氟碳铈矿和独居石的单体解离度仅为51.54%、58.36%、52.27%和63.64%。因此,强化矿石细磨和微细粒高效分选是解决精矿品位和回收率低的有效途径。   相似文献   

5.
刘双安  宫贵臣  刘杰 《金属矿山》2016,45(12):126-129
大台沟铁矿石属石英岩型磁铁矿,矿石铁品位为34.70%,主要有用矿物为磁铁矿,铁在磁铁矿中分布率达81.67%;主要脉石矿物为石英、白云母、绿泥石等。为给该矿石开发利用合理选矿工艺流程确定提供依据,进行了工艺矿物学研究。矿石结构主要为交代结构或交代残余结构、自行结构、半自形—他形结构;矿石构造主要为条带状构造、浸染状构造、致密块状构造。磁铁矿主要以自形、半自形晶粒状赋存于石英、云母等脉石矿物中;赤铁矿常呈交代结构与磁铁矿连生,是后期氧化磁铁矿而成,其单晶少见。磁铁矿原生粒度以微细粒为主,粗细分布不均;整体而言嵌布粒度微细,但基本上都在选矿的可选范围内。  相似文献   

6.
随着矿山开采年限的增加,近年来海南石碌铁矿的品质有所下降,该矿目前采用的选别工艺可获得 铁品位约 62.5%、铁回收率仅为 65% 的精矿,造成铁矿资源的浪费,经济效益一般,亟需依据该矿山新采出矿石的 禀赋特征研发创新性和颠覆性技术,形成高效开发利用方案,为海南石碌铁矿的高效开发与利用提供技术支撑。 通过化学分析、X 射线衍射分析、光学显微镜等分析手段对海南石碌铁矿进行了工艺矿物学研究。结果显示:矿石 TFe 品位 40.53%,铁主要以赤铁矿形式存在,其次为磁铁矿;有害元素 S 含量较高,为 1.32%,主要赋存于黄铁矿中; 主要脉石矿物为石英。矿石结构主要表现为赤铁矿和磁铁矿的自形晶结构,磁铁矿和黄铁矿的半自形晶结构,两 种及两种以上矿物之间交代结构、包含结构等。矿石主要呈浸染状构造、块状构造和条纹状构造产出。矿石中赤 铁矿和磁铁矿嵌布密切,较难解离,同时部分磁铁矿与赤铁矿中分布细粒脉石矿物,难以分离。黄铁矿粒度细小, 与磁铁矿和赤铁矿嵌布密切,易混入精矿,影响精矿质量。根据矿石工艺矿物学研究结果,依据当前难选铁矿石高 效选别新技术研究进展和矿石禀赋特征提出了脱硫—预富集—焙烧—细磨磁选的工艺流程。  相似文献   

7.
黄秋菊 《金属矿山》2019,48(4):111-115
玻利维亚穆通铁矿石主要有价元素为铁,矿石铁品位为57.87%,99%以上的铁以磁铁矿和赤褐铁矿的形式存在。矿石中有害元素Si、Al含量稍高,主要分布在石英、硅酸盐矿物和水铝氧石等脉石矿物中。矿石构造主要有块状构造、斑状构造、浸染状构造,矿石结构主要有斑状结构、包含结构、粒状结构、残余-骸晶结构、假象结构。赤铁矿常呈不规则粒状嵌布,并以稀疏浸染状嵌布于脉石矿物中,假象赤铁矿呈斑状嵌布,斑晶中含较多脉石包裹体,局部未被完全交代的磁铁矿与假象赤铁矿共生;磁铁矿多呈自形、半自形晶粒状嵌布,常被赤铁矿交代形成残余-骸晶结构;褐铁矿主要呈斑状嵌布,与铁质黏土紧密共生。矿石铁矿物嵌布粒度粗细不均,且部分铁矿物包裹细粒石英、绢云母,即使细磨也很难使其单体解离,这就导致与铁矿物连生的脉石矿物进入铁精矿而影响精矿品位。磨矿细度为-0.074 mm占85%时,矿石中77%以上磁铁矿、赤铁矿、褐铁矿均达到单体解离,而再继续磨细时,铁矿物单体解离度随磨矿增加提高幅度不大,应选择-0.074 mm占85%的磨矿细度进行选别。  相似文献   

8.
袁启东  姚灯磊  陈洲 《金属矿山》2019,48(1):106-110
为更好地开展矿石的选矿工艺研究,对某复杂多金属磁铁矿石进行了工艺矿物学研究。结果表明:矿石铁、锌品位分别为59.94%和2.93%。矿石中的主要矿物为磁铁矿,少量其他铁矿物赤铁矿、褐铁矿(包括针铁矿)为成矿后期的次生氧化物;金属硫化物主要有闪锌矿、黄铁矿、磁黄铁矿,黄铜矿、方铅矿较少;脉石矿物主要为普通角闪石,透闪石少量,此外还有少量绿帘石、绿泥石、云母类矿物等。矿石中的铁主要以磁铁矿的形式存在,占总铁的87.82%,锌、铅氧化程度均较高,硫化锌、氧化锌分别占总锌的55.29%和42.32%,硫化铅、氧化铅分别占总铅的39.39%和43.94%。矿石构造为黑色致密块状构造,多呈自形-半自形粒状连晶结构,各种矿物间形成交代结构、交代残余结构等。矿石中的有用矿物磁铁矿、闪锌矿的嵌布粒度与闪石类矿物相差不大,磁铁矿、闪锌矿及其与其他矿物间的嵌布关系较复杂,单体解离较困难。为了确保铁精矿含硫不超标,在弱磁选回收磁铁矿前需采用浮选工艺尽可能脱除硫化矿物。  相似文献   

9.
卢晶  王枫  李磊  袁晓玲  张青 《现代矿业》2019,35(8):112-115
安徽省霍邱县刘寺铁矿石主要有价元素为铁,有害组分为SiO2、S、P等。Ⅰ号矿体中Fe主要赋存于磁铁矿中;Ⅱ号矿体中Fe主要赋存于磁铁矿、镜铁矿(赤铁矿)中。矿石矿物结构以半自形粒状变晶结构、他形粒状变晶结构、片状变晶结构、柱状变晶结构、共边变晶结构、包含结构为主。矿石构造主要为条纹状构造、条带状构造、条纹条带状构造。Ⅰ号矿体磁铁矿嵌布粒度集中分布在0.075~1.2 mm。Ⅱ号矿体磁铁矿嵌布粒度集中分布在0.075~0.6 mm;镜铁矿嵌布粒度主要分布在+0.15 mm;赤铁矿嵌布粒度多-0.075 mm。重选难以获取较纯净的目的矿物,磁选可以获得较纯净的磁铁矿产品,杂质主要应为含磁铁矿包裹体、连生体的闪石类矿物,强磁选目的矿物损失较少,但含较多杂质。  相似文献   

10.
冀东豆子沟铁矿石铁品位为35.80%,铁主要以磁铁矿形式存在,其次为赤铁矿、碳酸铁,脉石矿物主要为石英、角闪石和辉石。为给该矿石开发利用提供依据,对其进行了工艺矿物学分析。结果表明:矿石结构主要为半自形—他形晶粒状结构,其次为自形晶粒结构、压碎结构、交代残留结构。矿石构造以条纹状和条带状构造为主,其次为片麻状构造。磁铁矿主要呈半自形—他形粒状赋存于石英等脉石矿物中,少数呈八面体型或立方体型赋存于石英或角闪石等脉石矿物中。矿石中磁铁矿嵌布粒度微细,64.01%的磁铁矿分布在0.02~0.16 mm粒级,12.59%分布在-0.02 mm粒级,这部分磁铁矿需细磨才能实现单体解离,但细磨容易造成泥化影响选矿指标,故建议采用阶段磨矿阶段选别工艺。  相似文献   

11.
随着鞍千入选矿石性质的变化,原有的工艺流程暴露出一些问题,如重选精矿品位低、浮选尾矿损失大等。针对鞍千半自磨—湿式预选的混磁铁精矿,进行了详细的工艺矿物学研究,并确定了搅拌磨细磨—磁选—反浮选短流程工艺。研究结果表明,混磁精矿中铁品位为42.91%,主要含铁矿物为磁铁矿和赤铁矿,其他金属矿物为少量黄铁矿,赤铁矿和磁铁矿与脉石矿物结合形成的连生体含量较多,且在细粒级中分布率均较高;在此基础上确定了搅拌磨细磨—弱磁选—弱磁尾矿强磁选—强磁精矿一次粗选一次精选三次扫选的工艺流程,弱磁精矿和反浮选精矿合并得到的综合精矿TFe品位67.68%、回收率91.88%,综合尾矿TFe品位为8.83%。本研究对于鞍山式赤铁矿石流程的优化具有重要的指导意义。   相似文献   

12.
以吉林某高铁钾长石矿为研究对象,通过X射线衍射分析、电子探针分析、光学显微镜分等分析手段对钾长石矿样进行化学组成、矿物嵌布状态以及粒度组成等工艺矿物学研究。研究结果表明,该矿样中主要是钾长石、钠长石、石英,铁元素主要分布在赤铁矿、褐铁矿以及磁铁矿中。矿样中钾长石以针柱状的细粒产出,部分铁矿物嵌布在钾长石微晶基底、孔洞边缘或浸染在脉石矿物中,为复杂难处理钾长石矿。且-0.0385 mm矿样中Fe2O3含量达到2.36%,需要在后续处理中进行脱泥、磁选、浮选、酸洗作业才能使产品达到高端钾长石市场要求。   相似文献   

13.
攀枝花某铁矿原矿石中有用矿物为磁铁矿,其磁性铁分布率为79.53%,有少量的赤铁矿、褐铁矿,钒钛含量极低无法进行物理选别,脉石矿物主要为云母、长石等硅酸盐矿物,矿石中的有用矿物因嵌布粒度细导致极难回收利用。为了高效开发利用该类矿石资源,经磨矿、磁选条件实验及重选探索实验,确定了单作业较佳工艺参数,经工艺流程实验,确定采用阶段磨矿、阶段选别、单一磁选工艺处理该矿石。工艺流程实验结果表明,在原矿石中铁品位36.78%,经三次磨矿、五次磁选,在-43 μm含量98%的最终磨矿粒度条件下,最终获得铁精矿品位为65.50%,产率41.77%,金属回收率为74.39%的铁精矿,为有效利用细粒嵌布类型攀枝花铁矿提供了新的参考工艺。   相似文献   

14.
张琦  唐学飞  刘杰  秦永红 《金属矿山》2019,48(2):183-187
随着辽宁某选厂重选精矿的铁品位变低,其已不能作为精矿产品汇入总精矿,为给该选厂工艺流程改善提供指导,从化学组成、元素赋存状态、矿物组成、矿物间的嵌布关系及连生关系等方面,对重选精矿进行了工艺矿物学研究。结果表明:重选精矿铁品位为60.62%,铁主要赋存于赤铁矿和磁铁矿中,主要的脉石矿物为石英;铁主要分布在-0.074 mm粒级,铁在该粒级分布率高达84.47%,TFe品位64.52%,只有通过细磨才能实现铁矿物与脉石的较好解离;在有用矿物与脉石的连生体中,以赤铁矿与脉石结合形成的连生体为主,其次为磁铁矿、赤铁矿与脉石矿物结合形成的连生体;随着粒度变细,试样中赤铁矿和磁铁矿的单体解离度快速提高,尤其在-0.045 mm粒级产品中,绝大多数赤铁矿和磁铁矿颗粒完成了单体解离;赤铁矿和磁铁矿的浸染粒度以中粒、细粒嵌布为主,中粒级试样中脉石含量仍较高,细粒赤铁矿和磁铁矿含量较高,铁主要赋存在-0.074 mm粒级中。建议采用细筛分级-载体浮选工艺进行试验研究,即重选精矿筛上返回再磨,筛下产品进入浮选,背负细粒磁选精矿完成回收。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号