首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
王靖  崔毅琦  张洋  张宇  宋强  黄丹  闫增达  童雄  韩彬 《矿冶》2023,32(6):121-130
以云南文山多金属含锡硫化矿为研究对象,通过X-射线衍射(XRD)、X-荧光光谱分析(XRF)、光学显微镜、扫描电镜(SEM)和矿物解离分析(MLA)等手段对该矿进行了系统的工艺矿物学研究并提出选别方案。结果表明:回收价值最高的元素为锡,主要以锡石的形式存在;硫化矿包括磁黄铁矿、毒砂、闪锌矿和黄铁矿等,其中磁黄铁矿为含硫主要矿物;矿样中含有少量的磁铁矿;脉石矿物主要是绿泥石、石英和黑云母等;选矿试验采用“磁选除铁—37μm分级—粗粒重选—细粒浮选”联合工艺流程,可获得S品位和回收率分别为21.60%和81.42%的细硫精矿,S品位和回收率分别为26.19%和87.71%的次硫精矿,脱硫效果较好。结果可为锡石综合回收奠定基础。  相似文献   

2.
<正> (一) 矿石性质及生产流程云锡大屯选矿厂硫化矿选矿车间处理的矿石属锡铜为主的多金属硫化矿。矿石中金属矿物主要有磁硫铁矿、黄铁矿、黄铜矿、锡石、铁闪锌矿、白钨矿及自然铋。非金  相似文献   

3.
某锡铜共生硫化矿是以黄铜矿和锡石为主要有价矿物的多金属硫化矿石,同时含有大量的硅酸盐和碳酸盐及其钙、铁脉石矿物。根据该矿石性质复杂的特性,进行了多种选矿工艺流程和选矿药剂制度的试验研究,确定了最佳的选矿方法,达到对锡铜回收利用的目的。矿石原矿含铜1.05%、锡0.34%、硫7.19%,采用强选择性硫化铜捕收剂和锡石组合捕收剂,通过铜硫混浮—铜硫分离、粗粒锡石重选、细粒锡石浮选—摇床精选的联合工艺流程选别后,得到较好的选别指标:铜精矿中铜品位25.05%、回收率91.78%;锡精矿中锡品位42.20%、回收率64.32%。  相似文献   

4.
四川壤塘锂多金属矿石选矿试验研究   总被引:1,自引:0,他引:1  
四川壤塘锂多金属矿石中主要有用矿物为锂辉石,具有综合回收价值的矿物为钽铁矿、铌铁矿和锡石。根据钽铌铁矿及锡石与锂辉石和脉石矿物的密度差异、钽铌铁矿与锡石的磁性差异以及锂辉石与脉石矿物的可浮性差异,采用分级重选—磁选—浮选联合工艺流程进行选矿试验,获得了锂精矿、钽铌精矿和锡精矿,使矿石中的有价元素得到了较好的综合回收。锂精矿Li2O品位为5.53%,Li2O回收率为72.68%;钽铌精矿Ta2O5和Nb2O5品位为17.00%和32.55%,Ta2O5和Nb2O5回收率为59.38%和66.05%;锡精矿锡品位为52.16%,锡回收率为80.00%。  相似文献   

5.
前言伦尼桑矿石大约含1.5%呈锡石的锡,锡石与硫化矿(大部分为磁黄铁矿)紧密共生,后者占矿石的50%,矿物特征表明,锡基本上存在于-150微米的颗粒中,非硫化矿的脉石含约15%中等比重的矿物,主要是菱铁矿。高比重硫化矿物在用摇床、带式溜槽和浮选选锡之前,用浮选方法除去。粗磨至-300微米(通常的硫化物浮选最粗粒度),与筛子成闭路,以尽量减少锡的过粉碎。最终尾矿包括硫化物精矿、锡石浮选尾矿和超细粒的泥质尾矿。细磨是在三台磨矿机中进行(表1),最大  相似文献   

6.
云南某锌锡矿矿物组成和化学成分复杂,锡石嵌布粒度微细,为难选的锡石多金属硫化矿。试验推荐采用粗细分级—强化脱泥—粗粒重选—细粒浮选+重选的联合工艺流程对矿石中的锡石进行选别,可以获得含锡40.79%,锡回收率为50.57%的锡精矿,试验指标比较理想。依据选矿试验成果和生产实践经验,对新建选矿厂锡石选别流程进行了优化设计。  相似文献   

7.
大厂100号特富矿属于锡石-多金属硫化矿.根据矿石性质,将磨矿粒度控制在0.25mm以下,原则流程为磁-浮-重,先用磁选选出磁黄铁矿,消除对硫化矿浮选的影响.浮选部分采用优先浮铅锑-混浮-锌硫分离,用重选摇床从浮选尾矿中回收锡.本工艺经长坡选厂应用表明,工艺合理,生产指标均达到设计要求,锡精矿品位47.79%,回收率71.77%;铅锑精矿含铅31.78%,回收率86.78%;锌精矿品位为47.79%,回收率82.10%.  相似文献   

8.
白钨矿与锡石的常温浮选分离1矿石性质矿石是含钨高的低度锡精矿,矿物组成以锡石、白钨矿为主;还伴有毒砂、黄铁矿、方铅矿、辉锑矿、闪锌矿和黄铜矿等硫化矿物,它们的产率大于28%,脉石矿物主要是石英和方解石。2浮选方法的选择白钨矿浮选分离通常采用波德罗夫法...  相似文献   

9.
张锦仙  吕超  杨林 《金属矿山》2024,(3):99-104
内蒙古某含碳高硫锌锡矿石锌品位1.02%、锡品位0.86%,硫和碳含量分别为14.02%、1.68%。矿石矿物组成较复杂,主要有用矿物为闪锌矿、锡石和黄铁矿,脉石矿物主要为石英、绿泥石和绢云母等。为确定矿石合理的开发利用工艺,采用预先脱碳—浮重联合工艺流程开展选矿试验研究。结果表明,矿石经预先脱碳、1粗1扫1精锌硫混选、1粗1扫3精锌硫分离浮选流程处理,闭路试验可得到Zn品位为45.16%、Zn回收率为71.19%的锌精矿,S品位为46.92%、S回收率81.91%的硫精矿;浮选尾矿采用摇床重选,经粗选、精选、复选和中矿再选,可获得Sn品位45.52%、Sn回收率81.99%的锡精矿,以及Sn品位3.13%、Sn回收率11.09%的锡中矿。所设计试验流程较好地解决了矿石中有机碳对浮选的不利影响,综合回收了有价矿物,可为同类矿石的开发利用提供理论借鉴。  相似文献   

10.
新疆某钨锡矿石可回收的有价元素主要为钨和锡。矿石WO_3含量为0.63%,钨主要以黑钨矿的形式存在,92.76%的钨存在于黑钨矿中;Sn品位为0.24%,78.26%的锡存在于锡石中。矿石钨、锡矿物种类多,且容易过粉碎;脉石矿物有褐铁矿、电气石、孔雀石、磁黄铁矿、绿泥石等中等密度的矿物,这些矿物的磁性与黑钨矿相近,增加了钨、锡分选的难度。为实现该钨锡矿石的有效回收利用,开展了选矿工艺研究。结果表明:矿石磨细至-1.0 mm条件下,采用粗选段分粒级单一重选、精选段脱硫—重选—磁选—中矿再磨—重选的工艺流程进行选别,获得的钨精矿WO_3含量为65.23%、对原矿回收率为78.04%,锡精矿Sn品位为42.40%、对原矿回收率为66.04%,实现了钨、锡资源的有效回收。  相似文献   

11.
大厂100号特富矿属于锡石-多金属硫化矿。根据矿石性质,将磨矿粒度控制在0.25mm以下,原则流程为磁-浮-重,先用磁选选出磁黄铁矿,消除对硫化矿浮选的影响。浮选部分采用优先浮铅锑-混浮-锌硫分离,用重选摇床从浮选矿中回收锡。本工艺经长坡厂表明,工艺合理,生产指标均达到设计要求,锡精矿品位47.79%,回心率71.77%,铅锑精矿含铅31.78%,回收率86.78%,锌精矿品位为47.79%,回收  相似文献   

12.
本文根据试验结果和生产实践,阐述了采用选矿冶金联合工艺分离锡石——多金属硫化矿粗锡精矿中锡钨铋硫矿物的过程。论述了多种有用矿物致密共生的矿石采用选矿冶金联合工艺的必要性和重要性,证实了选矿冶金联合工艺是有效分离上述矿石的各种矿物的有效方法。  相似文献   

13.
<正> 大田硫铁矿选矿厂在试验研究的基础上,改进选硫工艺,取得了显著效果。 (一)矿石性质大田硫铁矿矿床为高-中温热液充填交代矽卡岩型含硫多金属矿床。矿石类型主要有四种:硫铁矿石、铅锌黄铁矿矿石、含硫磁铁矿矿石和铁闪锌矿矿石。其中硫铁矿石是主要含有磁黄铁矿的矽卡岩矿石,伴生少量黄铁矿、黄铜矿,脉石矿物以石榴子石、透辉石和方解石为主,绿泥石、透闪石和石英次之。 (二) 原流程及生产状况原流程的特点是铜硫等可浮精矿再经分离得到铜精矿和少量的硫精矿,等可浮的尾矿通过一次粗选得到大量的硫精矿;其生产指标虽然硫回收率可达92%左右,但过程不稳定,材料、动力消耗大,选矿成本较高。 (三)流程改进的效果我们做了磁选一浮选流程试验。结果表明,该流程对矿石性质有较好的  相似文献   

14.
<正> 我矿是日处理原矿300吨的小矿山。选别流程为先浮选铜,再磁选铁,磁选尾矿用摇床选得钨锡混合粗精矿。原来用浮选-重选-浮选流程处理混合粗精矿,生产指标不理想。为此,改用重选-浮选流程,取得了较好的指标。(一)粗精矿性质粗精矿中主要有用矿物为锡石和白钨,约占70%,其次还有少量的(有时没有)黝锡矿。脉石矿物主要有柘榴石,约占23%,其次为弱磁性铁矿物和角闪石等。粗精矿含锡在8—40%之间,有少量锡石与角闪石连生,白钨矿全部单体解离。+400目产率80%,金属量76%以上;-400目锡品位比混合矿高10—20%。(二)原浮选工艺及存在问题原粗精矿采用单槽浮选,约75%粗精矿用苄基胂酸浮选锡石,浮  相似文献   

15.
王普蓉  王举 《金属矿山》2020,49(7):83-88
云南某氧化锡矿Sn含量为0.170%、Fe含量为4.66%,泥化现象严重,属含铁、低品位、高泥难选锡矿石。为开发适宜的选别工艺流程并确定最佳工艺条件,在原矿性质研究的基础上开展了该矿石的选矿工艺研究。结果表明:①矿石中含锡0.170%,-0.019 mm细泥含量为12.74%,矿石中主要有用矿物为锡石,其次为褐铁矿,主要脉石矿物为石英;锡主要以锡石及酸溶锡的形式存在,选别难度较大。②螺旋溜槽抛尾是该矿适宜的预先抛尾方式,最佳工艺条件为洗矿分级后+0.212 mm粗粒磨矿至-0.074 mm占56.25%、螺旋溜槽截矿器精矿端宽度55 mm、螺旋溜槽给矿矿浆浓度30%、螺旋溜槽给矿矿浆速率3.0 m3/h,在此基础上可获得产率为32.65%、锡品位为0.424%、锡回收率为81.43%的溜槽精矿。③溜槽锡精矿摇床精选可获得锡品位较高的摇床锡精矿,摇床锡精矿强磁选除铁可获得高品位合格锡精矿。④矿石经“螺旋溜槽预先抛尾—摇床精选—强磁选除铁”的联合工艺流程,可获得产率为0.22%,锡品位41.860%,锡回收率为54.17%的锡精矿,及产率为0.68%,锡品位4.950%,锡回收率为19.80%的锡富中矿,锡累计回收率为73.97%,选矿产品含杂均不超标,较好地实现了该锡矿的分选。  相似文献   

16.
云锡某锡尾矿锡铁综合回收选矿工艺研究   总被引:3,自引:1,他引:2  
针对锡尾矿锡铁致密共生的特性,以锡尾矿中含的磁性矿物为载体,在强磁场中将锡铁结合体回收并与含钙、镁、硅等的脉石矿物同步分离,经磨矿使锡铁结合体解离,采用磁选回收铁矿物、重选回收锡石的选矿工艺流程,获得铁精矿和锡精矿产品。流程试验试料含锡0.18%、含铁9.74%,获得锡精矿产率1.16%、锡品位4.38%、锡回收率28.23%,铁精矿产率7.04%、铁品位52.62%、铁回收率38.04%的试验指标。  相似文献   

17.
对云锡某低品位难选锡矿泥开展选矿试验研究,根据试料性质,采用离心选矿机预选富集并脱泥、浮选除硫化矿物、锡石浮选的工艺流程,有效的回收了细粒锡石;流程试验获得给矿锡品位0.21%,锡精矿品位6%、泥矿系统回收率40.43%,锡石浮选作业回收率76.28%的良好指标。  相似文献   

18.
某锡铜矿石锡、铜含量分别为0.59%、0.18%,有害杂质砷含量为1.86%,属高砷低品位锡铜矿石,锡主要以锡石的形式存在,铜主要以硫化铜的形式存在。为高效回收矿石中的锡、铜,采用重—浮联合工艺进行了选矿试验研究。结果表明,矿石磨至粒度为-0.9 mm情况下,采用螺旋溜槽预富集高密度的锡石,对脱粗(+0.5 mm棒磨)后的预富集重选精矿进行摇床分级分选后,再采用反浮选工艺脱硫砷,可高效回收矿石中的主要有价矿物锡石;然后用浮选工艺从锡尾矿中回收铜,铜1次粗选精矿再磨至-0.043 mm占85%的情况下经3次精选获得铜精矿,1次精扫选、2次扫选精矿等各中矿均顺序返回,最终获得锡品位为53.97%、锡回收率为80.10%的锡精矿,以及铜品位为22.67%、铜回收率为54.07%的铜精矿。  相似文献   

19.
内蒙古某铁铜锌锡多金属矿选矿工艺研究   总被引:1,自引:1,他引:0  
内蒙古某铁铜锌锡多金属矿是我国大型的铁锡为主的多金属共生矿,含铁35.54%、铜0.082%、锌0.85%、锡0.54%,主要回收的目的矿物为磁铁矿、黄铜矿、闪锌矿和锡石。通过多种选矿工艺流程的探讨和详细试验研究,最终采用磁选—铜锌混合浮选(铜锌分离)—锡重选(浮选脱砷)联合流程回收该矿中的铁、铜、锌和锡矿物,实验室闭路试验指标为铁精矿含铁66.37%、铁回收率83.57%,铜精矿含铜20.34%、铜回收率56.96%,锌精矿含锌45.21%、锌回收率80.02%,锡精矿含锡35.04%、锡回收率39.61%。  相似文献   

20.
某高砷锡石硫化铜矿粗粒浮选工艺研究   总被引:5,自引:1,他引:5  
试验用矿石为铜锡共生多金属硫化矿,矿石中的铜以细粒嵌布为主,且与黄铁矿、毒砂等致密共生。经过粗粒浮选工艺小型试验研究,采用粗磨-混合浮选-粗精矿再磨-铜砷(硫)分离的原则流程,能获得较好的技术指标。该工艺是在一段粗磨(-74μm占40%-45%)的条件下先富集单体及连生体硫化矿物,尾矿再进行选锡作业,这样有效地保护了锡石,减轻了锡石的过粉碎,为重选提供了好的给矿条件。铜粗精矿再磨再选,尾矿进入重选选锡,减少了锡石在硫化矿中的损失,提高了精矿铜品位和回收率,降低了精矿含砷量。该新工艺最终获得产率9.38%、品位23.58%、回收率91.17%的铜精矿,其中含砷仅为0.19%。同时锡在铜精矿中的损失也不到4%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号