首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 453 毫秒
1.
某磁-赤混合铁矿粒度微细、组成复杂,先后进行了阶段磨矿-弱磁-强磁-混合精矿细磨脱泥-反浮选流程和阶段磨矿-弱磁-强磁-弱磁精矿细磨磁选得精-强磁精矿细磨脱泥-反浮选流程对比试验研究,结果表明:二个流程均可得到较高品位(TFe 66%以上)的铁精矿,对开发同类或近类复合微细铁矿具有一定的指导意义.  相似文献   

2.
魏茜 《矿冶工程》2013,33(6):46-49
对某低品位难选氧化铁矿进行了阶段磨矿-弱磁-强磁-阴离子反浮选试验研究。首先在磨矿粒度-0.074 mm粒级占65%的条件下通过预先作业抛尾, 因矿石中有用矿物嵌布不均匀, 粒度较细, 选择对粗精矿进行再磨。再磨后的强磁精矿单独反浮选得到浮选精矿与再磨弱磁精矿混合得到最终铁精矿。全流程试验获得了铁品位为61.53%、铁回收率为63.31%的混合铁精矿。  相似文献   

3.
针对齐大山、司家营两处鞍山式红铁矿品位低、嵌布粒度细和含有部分强磁性矿物等特点,我们开展了弱磁-强磁-醚胺反浮选新工艺的研究。反浮选时只用醚胺或用氢氧化钠和水玻璃作分散絮凝剂,不用淀粉,获得了选择性絮凝脱泥的良好效果。脱泥后同样不用淀粉(赤铁矿的抑制剂),而只用醚胺作捕收剂进行反浮选。半工业试验获得精矿品位65.2%,回收率为80.6%的选矿指标。  相似文献   

4.
用GE-609捕收剂反浮选博伦铁矿磁选精矿   总被引:1,自引:0,他引:1  
新疆博伦铁矿磁化焙烧-磁选所得铁精矿铁品位仅60%左右,含硅量在10%以上。为提高该矿铁精矿的质量,采用武汉理工大学研发的高效阳离子捕收剂GE-609进行了提铁降硅反浮选试验,获得了铁品位为65.59%、铁回收率95.94%的反浮选铁精矿。由于反浮选尾矿含铁量较高,达21.36%,又对反浮选尾矿进行了弱磁粗选-再磨-弱磁精选处理,将尾矿含铁量降到了14.87%,所得弱磁选精矿铁品位为38.12%,可返回至反浮选作业。  相似文献   

5.
铁品位为26.06%的铜硫浮选尾矿中残存有少量难浮磁黄铁矿,弱磁选回收其中的磁铁矿时,该部分磁黄铁矿因磁性较强而进入铁精矿中,导致铁精矿硫含量严重超标。为了获得合格铁精矿,对铜硫浮选尾矿弱磁选铁精矿进行了反浮选脱硫试验研究。结果表明,采用1粗1精1扫、中矿顺序返回闭路流程处理铁品位为63.14%、硫含量达2.05%弱磁选精矿,最终获得了铁品位为64.53%、含硫0.28%、铁回收率为47.09%的合格铁精矿。弱磁选铁精矿反浮选脱硫效果良好,可作为现场改造的依据。  相似文献   

6.
某铁尾矿再回收铁矿物试验研究   总被引:7,自引:4,他引:3  
对某TFe品位为18.57%的铁尾矿进行了再回收试验研究。通过预富集、弱磁选可获得铁品位66.09%、回收率26.08%的弱磁选精矿;对弱磁选尾矿进行强磁选-阴离子反浮选可获得铁品位54.29%、回收率37.29%的反浮选精矿。对反浮选产品进行分析可知, 铁闪石无选择性分配是造成反浮选作业选别效率低的主要原因。  相似文献   

7.
介绍了对某铜选厂尾矿中的高硫铁资源采用QY-309混合捕收剂反浮选脱硫除杂,取得了良好的试验结果,浮选精矿可作为高炉炼铁优质原料。对弱磁精矿直接浮选,取得了浮选精矿铁品位为67.56%,硫含量仅为0.13%的指标;分析了影响脱硫作业的主要因素,并对反浮选作业进行了初步的技术经济分析。  相似文献   

8.
司家营铁矿通过弱磁选在从赤铁矿综合精矿中回收部分合格的磁铁矿时,弱磁尾矿再磨—浮选的赤铁矿精矿铁品位不合格。为解决该问题,通过调整反浮选给矿中磁铁矿含量,考察其对赤铁矿精矿指标的影响。结果表明,随着给矿中磁铁矿含量的增加,赤铁矿精矿铁品位不断升高;在磁铁矿含量20%时,可获得铁品位67.39%、回收率59.57%的赤铁矿精矿,达到合格标准,说明磁铁矿在赤铁矿阴离子反浮选中具有促进作用。结果对保证该选厂在从赤铁矿精矿回收合格磁铁矿的同时,最终赤铁矿浮选精矿铁品位达标具有积极作用。  相似文献   

9.
对江西某低品位长石矿采用"磁选除铁-反浮选除电气石-反浮选除云母-浮选长石"的工艺进行选矿试验研究,以实现其中所含长石、石英、云母3种矿物的有效分离。结果表明,经过弱磁加高梯度除铁,碳酸钠和油酸浮选电气石,硫酸、十二胺和柴油浮选云母,氢氟酸和十二胺分离长石与石英,最终可获得满足平板玻璃用一级质量标准和日用陶瓷用二级质量标准的长石精矿,以及满足玻璃生产工业中低档石英砂原料要求的石英精矿。  相似文献   

10.
本文介绍了合成十二胺作为齐大山铁矿石反浮选工艺的捕收剂,具有精矿品位高、适应性好、产品易沉降、过滤等优点。采用连续磨矿-弱磁-强磁-合成十二胺阳离子反浮选联合流程选别齐大山贫赤铁矿,工业试验获得了精矿品位65.22%、回收率78.42%的较好指标。  相似文献   

11.
四川某锰品位为21.83%的硅钙质锰矿石锰品位低、嵌布粒度细、磨矿易泥化。为给该矿石的开发利用提供依据,对其进行了原矿预先脱泥—磨矿—强磁选—再磨—阳离子反浮选—阴离子正浮选工艺流程试验。结果表明:原矿预先脱泥后磨细至-0.075 mm占75%,磨矿产品与矿泥混合后经1粗1扫湿式强磁选,得到锰品位为25.23%、回收率为85.92%的强磁选精矿,强磁选精矿再磨至-0.075 mm占85.14%,以硫酸为p H调整剂、十二胺为捕收剂经1粗2扫反浮选,可以得到锰品位为28.86%、回收率为78.57%的反浮选精矿,反浮选精矿以Na2CO3为p H调整剂、六偏磷酸钠为抑制剂、GJBW为捕收剂经1粗2扫正浮选,获得的最终锰精矿锰品位为33.62%、回收率为72.76%。试验结果可以为该硅钙质锰矿石的利用提供技术参考。  相似文献   

12.
某铁硫铜复杂多金属矿选矿工艺研究   总被引:5,自引:1,他引:4  
原矿中有用矿物为铁矿物、硫矿物和铜矿物,回收矿物种类较多,磁黄铁矿含量较高,矿石性质较为复杂。利用浮选药剂,改善磁黄铁矿的可浮性,将弱磁选前给矿产品中的硫含量控制在较低的范围。采用磨矿、弱磁选和浮选组合工艺,最终获得了合格的铁精矿和高硫铁精矿、硫精矿和铜精矿产品。  相似文献   

13.
针对河北司家营铁矿废石堆存量大、铁品位低、嵌布粒度细、处理难度大的特点,提出采用预选-阶段磨矿-阶段磁选-阴离子反浮选工艺流程处理。结果表明:铁品位为18.79%的废石经永磁干式磁选机抛尾-中细粒高梯度湿式强磁选机抛尾,可以获得铁品位为29.25%、回收率为59.61%的预选精矿,预选精矿经两阶段磨矿-阶段磁选,可以获得铁品位为52.71%、回收率为48.50%的磁选混合精矿,磁选混合精矿以NaOH为pH调整剂、淀粉为抑制剂、CaO为活化剂、MF为反浮选捕收剂,经1粗1精2扫反浮选,获得了铁品位为65.97%、作业回收率为89.21%、对原矿回收率为43.27%的合格精矿,可以为该类废石的资源化利用提供参考。  相似文献   

14.
调军台选矿厂浮选尾矿再选试验研究   总被引:3,自引:2,他引:1  
由于现阶段国内、外铁矿资源紧张,本着资源充分开发利用的原则,针对调军台选厂浮选尾矿的性质,在实验室进行了强磁抛尾,强磁精再磨,弱磁反浮选试验,取得入选尾矿品位15.15%,终精品位66.70%,产率4.47%,回收率19.68%的指标。  相似文献   

15.
袁家村铁矿生产流程中混磁精矿再磨溢流粒度较细、含泥量较高,仅经浓缩后直接进行反浮选,存在药剂成本高、浮选设备能耗高、精矿质量波动等问题。为解决上述问题,对再磨溢流(TFe品位42.70%)进行了强磁选脱泥-反浮选新工艺技术研究,采用平环ZH型三盘强磁选机可以抛出产率25.95%、TFe品位13.78%的尾矿,减少了入浮矿量,使入浮给矿TFe品位提高至52.84%。全流程闭路试验获得了TFe品位65.48%、回收率87.67%的铁精矿,与原生产指标相比,回收率提高了7.67个百分点。  相似文献   

16.
白云鄂博尾矿铁品位为25.71%,铁主要以磁铁矿、赤铁矿和硅酸盐形式存在。试样粒度较细,-0.023 mm粒级产率为56.03%、铁品位达到34.11%、铁分布率高达70.26%,而+0.025 mm粒级铁品位低于16%、铁分布率不足15%。为给该尾矿中铁的回收提供技术依据,进行了选矿试验。结果表明:试样经1粗1精弱磁选,获得了铁品位为64.10%、回收率为16.48%的弱磁选精矿;弱磁选尾矿经1粗1精高梯度强磁选,获得了铁品位为47.04%的强磁选精矿;强磁选精矿磨细至-0.023 mm占90%,以硫酸为调整剂、乳酸为抑制剂、W201为捕收剂经1粗2精1扫正浮选,正浮选精矿与弱磁精矿合并后为最终精矿,其铁品位为64.45%、回收率为58.47%。试验取得了较好的分选指标,可以为白云鄂博尾矿中铁资源的综合回收提供技术参考。  相似文献   

17.
赖伟强 《金属矿山》2017,46(6):94-98
山西某低品位含金镜铁矿铁品位为26.41%、金品位为0.67 g/t。矿石中金主要以自然金形式存在,自然金占总金的88.15%;铁主要存在于赤(褐)铁矿中,赤(褐)铁矿中铁占总铁的68.28%。为回收矿石中有价元素金和铁,进行了优先浮选金,浮选尾矿弱磁选-高梯度强磁选-反浮选回收铁选矿试验。结果表明,在磨矿细度为-0.074 mm占83.78%条件下,以石灰为pH调整剂、水玻璃为分散剂、丁基黄药+丁胺黑药为捕收剂、2#油为起泡剂,经1粗2精2扫浮选,获得了金品位为29.31 g/t、回收率为87.93%的金精矿,选金尾矿经1粗1精1扫弱磁选,获得了铁品位为65.86%、回收率为13.34%的铁精矿1,弱磁选尾矿经1粗1扫高梯度强磁选,强磁选精矿以NaOH为调整剂、改性淀粉为抑制剂、油酸钠为捕收剂,经1粗2精1扫反浮选,获得的铁精矿2铁品位为61.79%、回收率为50.67%,铁精矿1与铁精矿2合并后混合铁精矿铁品位为62.59%、总铁回收率为64.01%。试验结果可以为该矿石有价元素综合回收提供技术依据。  相似文献   

18.
朱显帮  黄新 《金属矿山》2012,41(3):66-69
选抛废粒度研究、阶段磨矿-阶段弱磁选和弱磁精反浮选脱硅试验研究。结果表明:湿式预选抛废可以显著提高入磨矿石品位、减少入磨量,采用2段磨矿、2段弱磁选不能获得铁品位和磷含量合格的铁精矿,弱磁精经1粗1精3扫反浮选脱磷,最终可获得铁品位为64.78%,铁回收率为68.01%,磷含量为0.139%的铁精矿。  相似文献   

19.
为高效率、低成本、小污染、高效益地开发利用湖北枣阳金红石矿石资源,根据主要脉石矿物有弱磁性,而金红石无磁性的特点,以高梯度中强磁选预富集工艺为基础进行了金红石选矿试验。结果表明:①在磨矿细度为-0.074 mm占88.60%的情况下,1粗1扫高梯度中强磁选抛尾产率可达29.16%,中强磁选精矿金红石含量为3.07%、回收率为89.50%;②高梯度中强磁选精矿经1粗3精3扫闭路浮选,可获得金红石含量64.53%、回收率为82.21%的金红石浮选精矿;③金红石浮选精矿采用高梯度强磁选-焙烧-酸浸工艺提纯,高梯度强磁选背景磁感应强度为1.2 T,焙烧温度为900 ℃、时间为45 min,盐酸浸出的酸浓度为10%、液固比为1∶5、温度为80 ℃、时间为30 min,最终获得金红石含量为87.88%、回收率为71.21%、TiO2品位为90.12%的金红石精矿。与传统的重选预富集工艺相比,采用磁选工艺可减少细粒金红石损失,提高金红石回收率,为国内金红石资源的高效开发利用提供了一种新思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号