首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
为研究干旱矿区地下水位下降和气侯变化对典型植被耗水的联合,选择榆神矿区优势植被沙柳为研究对象,以干旱指数表征气候变化,在野外调查、室内测试及原位试验的基础上,采用有限元算法分析不同地下水位埋深和干旱指数组合条件下的植被耗水特征。研究结果表明:植被生长受干旱指数和地下水位埋深的双重影响,当地下水埋深为1.0~2.0 m处,植被耗水主要受地下水控制;地下位水埋深为2.0~2.5 m时,植被耗水受地下水和干旱指数的双重影响;地下水位埋深大于2.5 m时,植被耗水主要受干旱指数影响;单指数模型可以很好的拟合地下水埋深和植被实际蒸腾量(T_a)与潜在蒸腾量(T_p)比值(T_a/T_p)的关系曲线,其相关系数高达0.99,利用单指数模型和T_a/T_p的比值可以反求出枯水年、平水年和丰水年条件下的植被生态临界地下水位,不同水文年的植被生态临界水位有差异性,认为当地下水位埋深大于1.24 m(平均),植被生长受到水分胁迫,当地下水位埋深大于2.06 m(平均),植被出现退化现象;同时,采煤引起地下水位下降对植被生态的影响是有限的,只有当采前地下水位埋深为1.0~2.5 m时,地下水位下降才会引发植被生态退化;当采前地下水位埋深大于2.5 m时,采煤引起地下水位下降基本对沙柳的生长不产生影响,此时植被生态退化主要受气候变化影响。目前,榆神矿区采前地下水位埋深普遍大于2.5 m,影响矿区生态环境的主要控制因素是气候变化(降水量),考虑到近年来榆神矿区降水量有增大趋势,因此出现"虽然地下水位明显下降,但是生态环境局部转好"的现象。  相似文献   

2.
为研究我国西部生态脆弱矿区植被与地下水关系及其对煤层开采的约束,采用路线穿越法剖析了典型区植被随潜水埋深变化的演替规律,利用遥感获取煤层开大规模采前(2000年)植被指数,并与同期地下水位埋深建立了统计关系。结果表明:研究区天然状态下植被随地下水位埋深的增加呈现明显的分带特征,潜水埋深0~4.0 m时植被对地下水依赖性较强;综合考虑水文地质条件和植被与地下水关系,榆神矿区可划分为植被约束区、地下水约束区和无约束区3个区;矿区开采15 a后,2014年矿区地下水位明显下降和植被盖度普遍升高现象并存,这与煤炭资源高强度开采区集中在无约束区有关。生态脆弱矿区井田规划和煤层开采必须重视植被和地下水约束研究,因地制宜地制定保水采煤技术预案。  相似文献   

3.
面向生态的矿区地下水位阈限研究   总被引:1,自引:0,他引:1       下载免费PDF全文
分布在干旱半干旱地区的植被,由于降水不足以维持其长期生存,需要地下水提供部分或全部水源,因而对地下水有一定的依赖性。煤层开采破坏含水层后地下水位会大幅降落,这在一定程度上会给依赖地下水植被造成水分胁迫,进而控制生态系统演化过程。针对榆神矿区煤层开采引起地下水位变化的基本特征,提出了生态安全约束下矿区地下水位控制阈值的确定方法。研究表明,植物根系与地下水毛细上升带保持接触时,植物就可以吸收利用地下水,因此本文将最大毛细上升高度与根系长度之和作为植被利用地下水的最大临界埋深。在毛管流理论指导下,以颗粒排列方式与孔隙直径大小的关系建立了最大毛细上升高度计算公式,并给出了通过颗粒级配曲线确定最大毛细上升高度的方法。据此计算的毛乌素风积沙最大毛细上升高度的取值区间为0.7~2.0 m,进一步确定了榆神矿区生态安全约束下的矿区水位控制下限为4.0 m。在此基础上,以2016年地下水流场基准,以水位埋深4.0 m为界将榆神矿区划分为生态约束区和无约束区。水位埋深小于4.0 m的区域植被对地下水依赖程度高,属于生态约束区,煤层开采造成地下水位下降极易使植被遭受水分胁迫,因而是矿区生态环境保护的重点。研究成果阐明了榆神矿区生态环境及地下水位对煤层开发的限制条件,为进一步推进保水采煤技术的发展奠定了理论基础。  相似文献   

4.
内陆干旱半干旱盆地地下水生态环境指标研究   总被引:2,自引:0,他引:2  
探讨了内陆干旱半干旱盆地地下水生态环境指标。内陆干旱地区主要生态环境问题是人工绿洲土壤次生盐渍化和天然绿洲植被衰败。不同区域地下水生态环境指标不完全相同,人工绿洲主要是土壤含盐量和地下水位临界埋深等指标,天然绿洲则主要是土壤含水量、土壤含盐量、潜水矿化度和地下水生态水位等指标。上述指标中最重要的地下水生态环境指标是地下水位埋深,其它指标如土壤含盐量、土壤含水量等指标可通过调节地下水位埋深来进行控制。人工绿洲临界埋深随气候和下垫面条件的变化而变化,年内不同时段指标阈值不同,天然绿洲的生态水位是适宜大多数植被生长的共同潜水埋深,为2.0-4.5m。表2,参9。  相似文献   

5.
以毛乌素沙地梅林庙煤矿为研究区,采用Landsat8和地下水观测资料为研究数据,通过地表温度、地下水埋深、归一化差分植被指数(NDVI)的计算,建立空间数据集,开展地下水埋深与NDVI和地表温度相关性分析。研究发现地下水埋深在小于1m时,NDVI与地下水埋深为弱正相关,与地表温度呈负相关。地下水埋深在1~2m时,NDVI与地下水位为弱的负相关,与地表温度为负相关,当地下水埋深2~5m时,NDVI与地下水位不相关,而与地表温度继续为负相关。由此判断地下水埋深在1~2m是毛乌素沙地植被的最佳生态水位,也是生态环境影响的重要水位指标,当水位变化超过这个范围,生态环境将发生明显变化。  相似文献   

6.
准东矿区邻近奇台绿洲地下水位变化趋势分析   总被引:2,自引:2,他引:0       下载免费PDF全文
根据准东矿区邻近奇台绿洲1983~2013年地下水位观测资料,对其变化趋势进行了分析,运用Surfer软件分析了奇台绿洲地下水埋深、地下水位和地下水流等分布特征,结果表明:近31年以来,研究区地下水位总体呈下降趋势,年均下降速率为0.51m/a,其中,西部区域下降速率为0.65m/a,东部区域下降速率为0.37m/a;在西部区域形成了多处地下水位降落漏斗,且漏斗面积不断增加;东南区域地下水位高于西北区域,地下水总体呈由南向北流动;地下水位分布和地形分布特征基本一致,局部地形起伏处,地下水流大小和方向变化亦有相应变化;由南向北地下水埋深逐渐变浅;农业灌溉用水量不断增加是造成绿洲地下水位下降的主要原因。  相似文献   

7.
白晓光 《煤炭技术》2007,26(10):99-100
植被状况的变化是反映区域性生态环境状况的重要指标。地下水是影响植被变化的主要因素。宁夏地处干旱半干旱地带,是全国生态系统最脆弱的省区之一。2000年后,随着宁夏黄河引水量的减小,水资源的不合理应用使银川平原的生态植被出现了退化的趋势。本文利用MODIS-NDVI遥感数据,对银川平原2000~2004年间的植被变化趋势进行了研究。在此基础上,对引用黄河水量及多年地下水位的变化对植被的影响进行了分析,并对适宜于植被发育的地下水位埋深进行了探讨。  相似文献   

8.
唐山市平原区浅层地下水动态及趋势预测   总被引:1,自引:0,他引:1  
随着唐山市社会经济的飞速发展,地下水开采量大大增加,导致地下水位大幅度持续下降.结合研究区水文地质条件及浅层地下水埋深监测资料,对唐山市平原区浅层地下水位多年动态特征进行了综合分析,并在此基础上采用灰色系统理论对研究区内的浅层地下水位总体变化趋势进行了预测.研究表明,降水与农业季节性开采是影响地下水动态的主要因素,在现状地下水开采条件下,地下水位将以0.41m/a的速度下降.  相似文献   

9.
减少矿产资源开发过程中水资源损失是生态脆弱矿区水资源管理的重点,量化地下水位埋深与潜水蒸发速率关系,可为西部干旱矿区水资源保护提供科学思路。以隔水岩组厚度与导水裂隙带高度之差,划分了榆神矿区煤层开采地下水位变化趋势分区;以水位埋深变浅区覆盖的风积沙为试样开展潜水蒸发试验,分析蒸发过程及不同水位条件下潜水蒸发规律;通过在水分特征曲线的转折点处构建双切线,推导求取地下水埋深上限阈值的解析公式;采用漏斗法测定榆神矿区风积沙的水土特征曲线,利用最小二乘法求取特征参数,求取榆神矿区煤层开采区地下水埋深上限阈值。结果表明:榆神矿区地下水位变化趋势可分为3个区,即水位埋深变浅区、过渡区和水位埋深增加区。水位埋深变浅区多位于榆神三、四期规划区,此区域水位埋深4 m的面积占矿区面积的59.1%,开采沉陷极易造成地下水浅埋或出露;榆神矿区风积沙蒸发过程可分为2个阶段,即稳定蒸发阶段和水汽扩散阶段,地下水位埋深0.5 m左右时蒸发过程中的水分传输机制发生了转变,蒸发进入水汽扩散阶段;在稳定蒸发条件下建立了土壤水分运移方程,推求了地下水埋深上限阈值计算公式,地下埋深上限阈值与毛细上升高度和进气压力值有关,在数值上等于表层土与地下水之间毛管水力联系中断时表层土的基质势;地下埋深上限阈值可以通过van Genuchten方程的拟合参数α,n来求解;利用实测风积沙水土特征曲线的参数,确定榆神矿区地下水埋深上限阈值为50 cm,与蒸发试验结果一致。水位埋深变浅是中深部煤层开采遇到的普遍问题,对于干旱半干旱地区的榆神矿区而言,控制合理的水位埋深上限已成为煤层开采中需要面临的新的科学问题。  相似文献   

10.
生态脆弱矿区含(隔)水层特征及保水开采分区研究   总被引:34,自引:0,他引:34       下载免费PDF全文
研究发现,沙漠区植被对地下水水位埋深具有很强的依赖性,揭示了陕北榆神府矿区内合理生态地下水位埋深为1.5~5.0 m,煤层开采的导水裂隙导致地下水位下降,表生生态退化,控制地下水水位是生态脆弱矿区科学开采的核心。室内模拟实验和开采实践表明,当煤层上覆隔水岩组厚度≥33~35倍采高时,煤层开采不会导致地下水位下降;煤层上覆隔水岩组厚度≤18倍采高时,煤层开采会破坏隔水层,导致水位下降;18~35倍采高时,可采取"限制采高"等措施实现保水开采。剖析了煤层、含水层的空间关系,划分了保水开采条件分区,提出了区域采煤方法规划方案,指出以控制地下水水位为目标,以采动隔水层稳定性分区为基础,以采煤方法规划为手段的开采方法是生态脆弱矿区煤炭资源科学开采的有效途径。  相似文献   

11.
地表裂缝对沙柳根际微生物和酶活性的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
杜涛  毕银丽  邹慧  郑娇龙  刘生 《煤炭学报》2013,38(12):2221-2226
以裂缝未经过的沙柳为对照,通过测定0~10,10~20,20~40 cm土样,利用统计分析方法研究了神东矿区补连塔煤矿有裂缝经过的沙柳根际微生物数量和酶活性的时空演变特征。结果表明:地表裂缝降低了沙柳根际细菌、真菌和放线菌的数量,提高了蔗糖酶、磷酸酶和脲酶的活性,改变了微生物、土壤酶以及微生物与土壤酶之间的内在联系。经过1 a多时间,沙柳根际真菌数量、磷酸酶活性和深层蔗糖酶活性受地表裂缝的影响有所减弱,而细菌数量、放线菌数量、脲酶活性和表层蔗糖酶活性受地表裂缝的影响未见明显减弱,沙柳根际细菌和真菌数量受地表裂缝影响的下降幅度、蔗糖酶活性和磷酸酶活性受地表裂缝影响的上升幅度的垂直分布格局发生了改变。可以得出:地表裂缝对沙柳根际的生物活性造成了一定的影响,沙柳根际的生物活性具有一定的自修复能力,但其完全恢复尚需较长时间。  相似文献   

12.
随我国煤炭开采向深部发展,奥灰承压水体上开采导致底板突水与其生态水位下降之间的矛盾日益突出。在分析渭北澄合矿区典型工作面5号煤层含(隔)水层组合特征的基础上,采用理论计算与现场实测综合确定5号煤层开采的底板破坏深度,从含水层结构破坏、生态水位、水质等方面研究了煤层开采对底板承压水的影响。结果表明:澄合矿区5号煤层开采底板破坏深度8~10.8 m,不同工作面斜长与底板岩性组合是影响该区底板破坏深度的主控因素,工作面斜长与底板破坏深度呈正相关,与底板含(隔)水层组合为负相关关系,煤层开采对底板含水层结构影响程度由大到小分别划分为Ⅰ,Ⅱ,Ⅲ级区,其中,Ⅰ级区主要分布于中南部和北部,面积为6.78 km2,占总面积的45.2%;煤层开采尚未对含水层水位、水质造成明显影响。提出以底板注浆加固技术为主保护水资源,稳定生态水位,为渭北地区煤炭工业健康发展找到有效途径。  相似文献   

13.
神东矿区石圪台煤矿矿井突水因素   总被引:2,自引:2,他引:0  
崔邦军  蒋泽泉 《煤炭技术》2012,31(1):119-121
神东矿区石圪台煤矿萨拉乌苏组分布广泛、厚度大,富水性较强,是矿井涌水的主要水源。文章论述了石圪台煤矿22302工作面涌水特点,认为矿井涌水量主要与萨拉乌苏组含水层厚度、煤层上覆基岩厚度、煤层采高等因素有关,提出了对冒落带进行注浆加固、减少矿井水产生量和保持生态水位稳定的新认识。  相似文献   

14.
煤炭开采对水循环、水资源量及水环境影响较大。矿坑大量排水改变了地下水的运移规律,损害了矿区生态环境。在采煤过程中,最大限度地减小含水层结构破坏程度,控制地下水位下降幅度,是矿井建设面临的难题。以三交河煤矿煤炭开采为例,通过分析各煤层及其覆(伏)岩结构特征,计算导水裂隙带发育高度和采煤破坏的水资源量,认为上组煤开采对上覆含水岩组破坏较大,造成矿区水位超常下降,甚至疏干;下组煤开采对奥灰水影响较小。针对分析结果,提出了实施保水采煤以减少对覆岩含水层的破坏、加强对水资源的综合利用等应对措施。  相似文献   

15.
徐传升 《煤炭技术》2014,(9):321-322
随着丁集煤矿的开采深度逐渐向深部发展,工作面的高温现象也更加突出,矿井气象条件呈现恶化趋势,严重地威胁着煤矿安全高效生产和井下工人身心健康。根据丁集煤矿的地温钻孔资料,对其地温状况进行分析,发现丁集煤矿的地温异常特征比较明显。全井田地温梯度2.30~4.00℃/100 m,平均为3.21℃/100 m。深度每增加31.15 m,地温增加1℃,属地温异常区。运用线性回归和数理统计方法对开采深度不断增加的煤层的地温进行分析,发现丁集煤矿的地温分布在深度上具有规律性。根据得出的规律,提出了地温的防治措施,对煤矿的安全高效开采具有一定的现实意义。  相似文献   

16.
西部生态脆弱矿区地下水对高强度采煤的响应   总被引:8,自引:0,他引:8       下载免费PDF全文
为研究榆神府矿区高强度煤层开采对地下水的影响,分析潜水位下降与煤层开采强度的关系,通过资料收集和实地调查两种方法,获取了矿区煤炭资源大规模开采前(1995年)地下水位和煤炭开采后(2014年)地下水位,2者叠加后求取了地下水位变化幅度,并与开采强度分区进行耦合,分析地下水位变化与开采强度的关系。研究区73.0%的区域地下水位未发生明显变化,但有7.3%区域地下水位下降幅度超过8 m,尽管比例小,但面积达758.9 km2,对区域地下水均衡产生了较大影响;高开采强度开采是矿区地下水位下降的主要驱动因素,71.5%的水位明显下降区(8 m)是由高强煤层开采导致的。导水裂隙带和含水层特征是煤层开采过程中控制地下水位变化幅度和范围的关键所在。高强度煤层开采区必须推行保水采煤技术才能达到资源与环境和谐发展的目的。  相似文献   

17.
煤炭开发与地下水资源保护之间的矛盾日益突出,煤炭开发在促进社会经济发展的同时也给当地生态环境带来了较大破坏,尤其对地下水资源的影响更为显著。如何实现煤炭开发与水资源保护间的相互协调是当前煤矿开采面临的巨大难题。通过分析煤矿开采对水资源尤其是对顶底板含水层的影响,进一步阐述了煤炭开采与水资源保护技术的技术进展情况及当前可实现保水开采的2种基本技术途径:以“堵截法”和“疏导法”为理念的保水开采技术的适用性和面临的技术难题,提出矿井要在不断探索实践中科学合理地选择适用于矿井自身的保水开采技术,对解决当前煤矿开发与水资源保护之间面临的双重难题,对矿井可持续发展具有一定的指导作用和借鉴意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号