首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 279 毫秒
1.
煤储层应力敏感性及影响因素的试验分析   总被引:13,自引:0,他引:13       下载免费PDF全文
孟召平  侯泉林 《煤炭学报》2012,37(3):430-437
采用鄂尔多斯盆地东南缘高煤级煤储层样品,通过煤样的应力敏感性试验,分析了煤储层应力敏感性及有效围压、煤中裂隙和含水情况等对煤储层应力敏感性的影响。研究结果表明:煤储层渗透率随有效应力的增加按负指数函数规律降低,当有效应力从2.5 MPa增加到10 MPa时,煤样无因次渗透率为0.10~0.28,平均低于0.15,渗透率损害率为71.92%~90.14%,平均为84.59%。在有效应力小于5 MPa时,煤储层渗透率随有效应力增加快速下降,应力敏感性最强;有效应力在5~10 MPa时,渗透率随有效应力增加而较快下降,应力敏感性较强;而当有效应力大于10 MPa后,渗透率随有效应力的增加下降速度减缓,应力敏感性减弱。含裂隙煤样初始渗透率较高,且应力敏感性相对较小;但在升压过程中产生不可恢复的塑性变形大,导致降压后不可逆损害率相对较高。同样,含水煤样的渗透率随有效应力的增加而快速下降,含水条件下的应力敏感性也更明显。  相似文献   

2.
覆压下煤的孔渗性实验及其应力敏感性研究   总被引:3,自引:0,他引:3       下载免费PDF全文
孟雅  李治平 《煤炭学报》2015,40(1):154-159
采用沁水盆地南部煤样,通过覆压下煤的孔隙度和渗透率实验分析,建立了高煤级煤样孔隙度、渗透性与有效应力之间的相关关系和模型;采用渗透率损害率和应力敏感系数分析了高煤级煤储层的应力敏感性。研究结果表明:煤样孔隙度和渗透率随着有效应力的增加按负指数函数规律降低。在有效应力小于5或6 MPa,煤储层应力敏感系数变化较大,且煤储层应力敏感系数随有效应力增加而快速下降;渗透率损害率随有效应力的增加而快速增大,应力敏感性强;而在有效应力大于5或6 MPa时,煤储层应力敏感系数随有效应力的增加下降速度整体减缓,且存在一定波动变化,应力敏感性减弱,同时渗透率损害率随有效应力的增大而增加较为缓慢。  相似文献   

3.
陈刚  秦勇  杨青  李五忠 《煤炭学报》2014,39(3):504-509
通过开展鄂尔多斯盆地东缘高中低煤阶不同含水饱和度煤储层应力敏感性实验,研究了煤储层渗透率动态变化规律及其对煤层气产出的影响。实验结果证实:不同煤阶煤储层渗透率随有效应力的增加均呈现负指数函数降低的规律。在有效应力小于5 MPa时,煤储层渗透率随有效应力增加快速下降73%~95%,平均87%,煤储层应力敏感性最强;有效应力在5~10 MPa时,渗透率随有效应力增加而较快下降5%~18%,平均10.4%,煤储层应力敏感性较强;而当有效应力大于10 MPa后,渗透率随有效应力的增加下降速度减缓,应力敏感性减弱。实验结果表明中高煤阶煤储层应力敏感性随有效应力增加要弱于低煤阶。随着煤样含水饱和度的增加,煤储层应力敏感性也逐渐增强。根据煤储层渗透率动态变化规律提出了煤层气井排采过程中应遵循缓慢—保压—持续的排采工作制度,才能获得煤层气最大产出量。  相似文献   

4.
应力敏感条件下煤层压裂裂缝延伸模拟研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究煤储层应力敏感性质对压裂裂缝延伸的影响,以清水为介质对晋城区块煤样采用围压恒定不变、孔隙压力渐变的方式进行了应力敏感试验,分析了净围压与渗透率之间的关系,考虑渗透率动态变化对压裂液滤失的影响,推导了煤层压裂滤失系数计算方程,建立了应力敏感条件下煤层压裂裂缝延伸模型并提出了求解方法,在应力敏感性质考虑前后,进行了现场煤层气井施工对比模拟计算。研究结果表明:围压一定时,随着孔隙压力增加煤样渗透率逐渐增大,孔隙压力从3 MPa增加到9 MPa,煤样渗透率从0.14×10 -15 m 2增加到2.06×10 -15 m 2,渗透率随着净围压的增大呈指数函数规律降低;滤失系数是施工时间与位置坐标的函数,具有动态变化性质,有效应力为7 MPa时,滤失系数为0.000 224 m/min 0.5,有效应力为1 MPa时,滤失系数为0.000 554 m/min 0.5,滤失系数与有效应力之间同样存在指数递减关系;考虑应力敏感效应前后,模拟计算结果与实际监测值之间的偏差分别为52.8%和26.8%,因此,考虑应力敏感效应的影响可以大幅提高模拟计算的准确度,使计算结果更接近实际情况。  相似文献   

5.
《煤矿安全》2020,(2):15-19
为研究煤层气开发过程中有效应力增加对煤储层孔渗各向异性的影响,采用不同方向的煤岩样品对沁水盆地南部煤层气储层各向异性进行了评价。结果表明,煤层气储层孔隙度和孔隙结构具有明显各向异性特征:面割理方向核磁共振曲线为双峰型,以大孔、割理为主;端割理方向为宽底单峰型,以中孔为主;垂直煤层理方向为单峰型,中、小孔发育。有效应力加载至10 MPa后,3个方向核磁共振信号强度均降低,表明煤样部分孔隙被压缩、割理闭合。煤层气储层渗透率具有明显各向异性特征:面割理方向渗透率达到垂直层理方向的9倍以上;随有效应力增加,储层各向异性程度降低,但面割理方向与垂直层理方向渗透率异质程度最强。煤层气储层应力敏感性具有明显各向异性特征:面割理方向应力敏感性最强,应力敏感性系数和渗透率损害率均最大;垂直煤层理方向应力敏感性最弱,应力敏感性系数和渗透率损害率均最低。有效应力卸载后,不同方向煤岩渗透率恢复率不同,面割理方向最高,达到55.3%,垂直煤层面方向恢复率最低,为40.2%。  相似文献   

6.
中低阶煤层气资源丰富,占全国煤层气预测资源量的26%。煤储层中含有诸多微裂隙,在储层的应力状态发生变化时,储层内部结构发生改变,储层的物性参数随之改变,煤层表现出明显的应力敏感性。为了研究煤岩渗透特性,选取山西晋城裂缝发育良好的煤岩,采用岩石力学三轴实验系统,通过施加不同驱动压力、不同有效应力,探究了不同驱动压力、不同有效应力下储层渗透率变化规律。结果表明,驱动压力不变的条件下,随着有效应力的增加,煤岩岩芯的渗透率降低,当有效应力由0.5 MPa增大到2.0 MPa时,渗透率降低60%以上;在有效应力不变的条件下,随着驱动压力的增加,煤岩岩芯的渗透率呈指数形式降低。  相似文献   

7.
为研究土城向斜中阶煤煤储层孔隙度、渗透率、应力敏感性特征及对煤层气开采的影响,采集土城向斜1号、3号、5号、15号、17号、291号、292号煤层煤心煤样,以覆压孔渗试验为手段,对比各煤储层孔隙度和渗透率随有效应力的变化规律,利用孔隙度应力损害率、渗透率应力损害率及渗透率曲率等参数,分析了各煤储层有效应力敏感性。结果表明:煤储层随有效应力的增大,孔隙度及气体渗透率均呈负指数降低;试验煤储层应力敏感性系数为0.035~0.073 MPa-1,3号煤层应力敏感性回归系数最大;孔隙度应力损害率随有效应力的增加而增加,埋深较浅的3号煤层的应力损害率相对较大;渗透率应力损害率随有效应力的增加而呈指数增加,3号煤层的渗透率损害率明显大于其余煤样;煤储层渗透率曲率随着有效应力的增加,应力敏感性呈指数减弱;在相同有效应力下,3号煤层应力敏感性大于5号、15号、29号煤层,1号、17号煤层应力敏感性最弱。  相似文献   

8.
在低渗透油气田的勘探开发过程中,储层岩石的应力敏感性得到了极大的重视,应力敏感的作用与常规的速敏、酸敏、水敏、盐敏和碱敏作用一样对储层的物性变化起着重要的作用;并且直接影响了产能的物性下限.以四川盆地蜀南河包场地区气藏含束缚水储层的岩石实验分析资料为例,分析了应力敏感性研究机理、应力敏感性与物性下限的关系.通过模拟了气藏衰竭的开发过程,获知地层孔隙压力下降,即储层有效应力增加对储层有效渗透率的影响.研究表明,对于包界地区须家河组低渗气藏,其衰竭开发过程中,地层压力下降造成的应力敏感损害不超过50%,即应力敏感性为弱-中等偏弱.低渗透储层的产能界限确定必须考虑固液耦合的影响,当岩样渗透率高于0.3×10-3μm2后,渗透率损害率呈平缓下降趋势,应力敏感损害弱.  相似文献   

9.
为了查明煤层气开发中有效应力变化对含水中阶煤储层渗透性的影响,对黔西松河区块1+3号煤层的同一煤柱重复开展了应力敏感性试验,分析了重复荷载作用与饱水压力对煤储层渗透率及应力敏感性的影响机理,并探讨了煤层气井储层改造与排采优化措施。研究表明:重复荷载作用与煤样饱水压力共同影响着中阶煤储层气测渗透率及应力敏感性。随着重复荷载次数增加,煤体发生塑性-弹性变形演化,应力敏感性逐渐减弱,渗透率不可逆损害率降低。与10 MPa饱水压力相比,20MPa饱水煤样初始气测渗透率显著降低,应力敏感性减弱并逐渐趋于稳定。中阶煤储层微观孔裂隙发育,渗透率应力敏感性强,煤层气开发工程中应重视煤储层保护。  相似文献   

10.
以山西潞安矿区大平煤矿3号煤层为研究对象,利用HB-2型煤岩样孔渗吸附测量装置,系统探讨了煤渗透率对孔隙压力以及围压的响应规律,定量分析了受载煤样渗透率与孔隙压力及围压之间的关系。结果表明:在低气压条件下煤样渗透率随孔隙压力的增加符合幂函数降低趋势,孔隙压力在临界值1.5 MPa以下时,煤样渗透率更敏感;孔隙压力恒定条件下,煤样渗透率随围压的升高呈幂函数降低趋势,渗透率降幅明显,多高于85%;煤储层应力的变化会对煤渗透率产生50%以上的不可逆损伤,煤体加卸载过程中的渗透率衰减率随着围压升高整体趋势是向下的衰减规律,其局部变化为不仅1个极值的波动特征。  相似文献   

11.
高阶煤渗透率温度应力敏感性试验研究   总被引:6,自引:0,他引:6       下载免费PDF全文
陈术源  秦勇  申建  汪岗  侯晓伟 《煤炭学报》2014,39(9):1845-1851
煤储层渗透率对温度和应力的敏感性响应,是深部煤储层物性评价的基础参数之一。以山西晋城无烟煤样为研究对象,利用高温覆压孔渗测定仪测定了煤样的孔隙率和渗透率,分析了其对温度和压力的敏感性。结果表明:高阶煤的孔隙率、渗透率与压力呈幂函数式负相关关系,在低压阶段随着压力升高迅速降低,在高压阶段趋于稳定。高阶煤渗透率对温度不敏感,当压力低于2MPa时随着温度的升高而降低,压力高于2 MPa则与温度之间关系不显著。压力是影响高阶煤孔隙率和渗透率的主要因素,而温度对孔隙率和渗透率影响较小。基于曲率分析方法对成庄高阶煤渗透率应力敏感性进行了分析,并与郑庄高阶煤和韩城高阶煤对比显示,成庄矿高阶煤的应力敏感性在低应力位置较强。因此,成庄矿进行煤层气开发时,需制定合理的排采制度,避免渗透率应力敏感性导致的负产能效应。  相似文献   

12.
不同加卸载下层理裂隙煤体的渗透特性研究   总被引:6,自引:0,他引:6       下载免费PDF全文
为获取不同载荷条件层理裂隙煤体渗透演化规律,采用煤岩渗透-力学试验系统,在加载、卸载过程中对含层理原煤试件进行渗透实验研究。实验结果表明:加载阶段,随着有效应力的增大,层理面间隙宽变小,渗透率降低,加载初期的渗透率急剧降低,当有效应力从1 MPa升高到7MPa时,渗透率下降近81%,随后渗透率的变化趋于平缓;卸载阶段,随着围压的不断卸除,受压的层理裂隙得以逐渐恢复,渗透率逐渐增大,但最终渗透率只恢复到初始值的14%,即加载过程煤体层理裂隙变形、闭合对裂隙面造成永久性的损伤,使得在卸载过程中难以恢复而造成渗透率损失;并结合实验条件建立了层理裂隙煤体渗透率与有效应力之间的理论模型,与实验结果对比分析,具有较好的吻合度。  相似文献   

13.
刘国军  鲜学福  周军平  赵源  殷宏  郭耀文  谢爽 《煤炭学报》2017,42(10):2670-2678
根据近几年兴起的无水压裂学术思想,采用超临界CO_2压裂后的裂隙页岩体试件(Φ100 mm×200 mm圆柱体试件),开展了不同体积应力和不同温度条件下CO_2渗流实验来模拟压裂后页岩气储层的渗透特性变化,揭示不同因素对裂隙页岩体渗透率的影响机理。实验结果表明:页岩吸附CO_2后渗透率降低;裂隙页岩体渗透率随有效应力的增加呈负指数关系减少;在CO_2超临界温度32~48℃的内页岩渗透率随温度升高而降低,而且渗透率对温度的敏感性也随着温度的升高越来越小;在低压阶段(1~3 MPa),Klinkenberg效应作用明显,在该阶段渗透率随着气体压力的增加而减少,当气体压力在3~5 MPa时,渗透率随气体压力的增加而增加;页岩储层对CO_2的渗透率受地温、地压以及其自身孔隙结构共同影响。  相似文献   

14.
孟召平  侯安琪  张鹏  郝海金  武杰 《煤炭学报》2017,42(10):2649-2656
采用沁水盆地3个典型煤矿中、高煤阶煤样,开展了实验室煤样流速敏感性实验,分析了不同流速条件下煤样渗透率的变化规律,建立了煤储层渗透性与流速之间的关系和模型,揭示了中、高煤阶煤储层流速敏感性的控制机理。研究结果表明,煤样渗透率随流速发生变化,且存在一个临界流速。在临界流速之前随着注入流量(或流速)的增加煤样渗透率增加,当流速超过临界流速后,煤样的渗透率随着流体流速的增加反而减少。煤储层流速敏感性主要受控于煤储层物性和煤中速敏矿物。随着煤储层孔隙度、渗透率和流体流量的增高,煤储层速敏损害率按对数函数关系增高。实验煤样黏土矿物占矿物质含量为66.63%~99.89%,主要以高岭石、伊利石为主,存在潜在的速敏伤害,速敏实验结果表明,本区实验煤样存在不同程度的速敏损害,煤样速敏损害程度由弱至中等偏强,临界流速低。随着煤中黏土矿物含量的增加,煤储层速敏损害率也增高。在煤层气井排采过程中,寺河煤矿和西山煤矿煤层气井排采降速应为赵庄煤矿的6倍左右。  相似文献   

15.
承压破碎煤体渗透特性参数演化实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究承压破碎煤体渗透特性参数演化规律,利用自主设计的承压破碎遗煤渗透率演化实验装置,开展了不同粒径配比煤样在不同轴压下的渗透率演化实验。实验结果表明:(1)在相同应力作用下,随着煤样粒径的增大,其渗透率逐渐变小,且较大粒径范围煤样的渗透率较小;在应力增加量相同的条件下,随着煤样粒径的增大,其渗透率的变化率越大,且混合粒径范围较大煤样渗透率的变化率均高于单一粒径或粒径范围小的煤样的变化率。(2)在较低孔隙压力范围内,煤样的渗透率均随孔隙压力的增大呈现出降低趋势,且存在一个轴压的临界值(9 MPa左右)。当轴压小于该临界值时,随着孔隙压力的增加,煤样渗透率的变化趋势更明显;而当轴压大于该临界值时,煤样渗透率的变化趋势较为平缓。(3)加载初期,随着孔隙率的减小,渗透率近似线性下降;当轴压达到9~12 MPa时,渗透率随孔隙率的下降较为平缓;继续增加轴压,渗透率随孔隙率的减小而急剧降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号