首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
深部破碎煤岩体受地应力和开采扰动常处于三向应力状态,其渗透特性是影响矿井突水灾害预防和瓦斯抽放的重要因素之一。为研究深部破碎煤体的渗透性能,采用自主研发的破碎岩石三轴渗流试验系统,并设计一套破碎煤体三轴渗流试验方案,进行三轴应力作用下破碎煤体渗流试验,得到破碎煤体渗透特性随围压及孔隙率的演化规律。试验结果表明:①三轴应力作用下破碎煤样渗流雷诺数最大值为47. 58,渗流速度与孔压梯度两者之间符合Forchheimer关系;②三轴应力作用下破碎煤样的孔隙率与围压的变化规律呈负相关,各级轴向位移下,两者服从对数函数关系;③随着有效应力的增大,各粒径下的破碎煤样孔隙率逐渐减小,破碎煤样孔隙率的理论计算值与试验结果较为吻合,表明文中给出的孔隙率计算方法可行;④各级轴向位移下,破碎煤样的渗透率随围压增大而减小,不同粒径的破碎煤样渗透率随围压的演化规律可用k=me~(nσ3)公式表示,颗粒粒径越大,破碎煤样的渗透率随围压的变化越敏感;⑤颗粒粒径及孔隙排列方式影响破碎煤样渗透性能,不同粒径破碎煤样随孔隙率的减小,渗透率整体减小,非Darcy流β因子呈增大趋势,其中渗透率的量级为10~(-14)~10~(-10) m~2,非Darcy流β因子的量级为10~7~10~(11)m~(-1)。所得研究结论有助于增强深部破碎煤岩体渗透特性演化规律的认识。  相似文献   

2.
承压破碎煤体渗透特性参数演化实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究承压破碎煤体渗透特性参数演化规律,利用自主设计的承压破碎遗煤渗透率演化实验装置,开展了不同粒径配比煤样在不同轴压下的渗透率演化实验。实验结果表明:(1)在相同应力作用下,随着煤样粒径的增大,其渗透率逐渐变小,且较大粒径范围煤样的渗透率较小;在应力增加量相同的条件下,随着煤样粒径的增大,其渗透率的变化率越大,且混合粒径范围较大煤样渗透率的变化率均高于单一粒径或粒径范围小的煤样的变化率。(2)在较低孔隙压力范围内,煤样的渗透率均随孔隙压力的增大呈现出降低趋势,且存在一个轴压的临界值(9 MPa左右)。当轴压小于该临界值时,随着孔隙压力的增加,煤样渗透率的变化趋势更明显;而当轴压大于该临界值时,煤样渗透率的变化趋势较为平缓。(3)加载初期,随着孔隙率的减小,渗透率近似线性下降;当轴压达到9~12 MPa时,渗透率随孔隙率的下降较为平缓;继续增加轴压,渗透率随孔隙率的减小而急剧降低。  相似文献   

3.
为揭示煤矿开采断层破碎带突水灾害发生机理,有必要深入研究断层破碎带岩体的孔隙结构和渗透特性。研制了破碎岩体渗流-应力耦合试验装置,提出了应力作用下级配破碎岩体孔隙结构测试和渗流试验方法,研究了应力和级配对破碎岩体孔径分布特征、孔隙分形特征和非线性渗流行为的影响规律,构建了基于核磁共振的承压破碎岩体渗透率预测模型。试验结果表明:(1)颗粒分形维数为2.6的连续级配和间断级配破碎岩体的孔径分布均为三峰结构,级配破碎岩体中小颗粒的缺失会导致孔隙率和最大孔径增大,降低破碎岩体的压缩性,增大应力可促使渗流孔向束缚孔转变,降低破碎岩体的压缩性。(2)渗流孔隙率对级配破碎岩体渗透率起主导作用,束缚孔隙率对渗透率的影响较小,增大应力会降低破碎岩体渗透性,大颗粒的缺失会导致级配破碎岩体渗透率减小。(3)连续级配和间断级配破碎岩体的非线性渗流特性均可用Forchheimer方程描述,应力影响下破碎岩体的渗透率和非Darcy流β因子变化趋势相反,小颗粒的缺失会导致级配破碎岩体非Darcy流β因子减小。(4)构建了基于核磁共振的级配破碎岩体渗透率预测模型,通过剔除束缚孔的影响并引入渗流孔的加权贡献,可显著提高...  相似文献   

4.
房柱式及巷式矸石充填开采中,煤柱与矸石两两相隔,破碎矸石充填体处于侧限压缩状态,破碎矸石的密实程度、孔隙特征及渗透特性对于煤层瓦斯流动及地下水渗流的控制具有重要的价值。基于稳态渗透法及轴向位移控制法,利用一套自制的破碎岩体渗透试验系统,测定了破碎矸石在不同混合粒径下承压过程中的非Darcy流渗透特性,得到渗透特性(渗透率k和非Darcy流β因子)随孔隙率的变化规律。研究表明:1)雷诺数计算及孔压梯度与渗流速度关系曲线说明破碎矸石的渗透特征属于非Darcy流;2)孔隙率随着压缩位移的增加而减小,对于混合粒径试样,较小颗粒充填到较大颗粒的孔隙中,是使岩样的初始孔隙率减小的主要原因;3)在侧限压缩下,大颗粒受挤压破碎是产生0~2.5 mm粒径的原因,而渗流造成细小颗粒质量流失;4)侧限压缩下,渗透率总的趋势减小,而非Darcy流β因子增加,但在压缩过程中,渗透特性的变化趋势受颗粒粒径的影响会出现局部波折,说明破碎矸石的渗透特性与侧限压缩位移、颗粒粒径大小、压缩破碎、排列方式及孔隙结构(通道)有关。  相似文献   

5.
为了研究有效应力对渗透率的影响机制,利用自主研发的煤岩瓦斯吸附-解吸-渗流平台,开展了轴压、围压同步加载条件下煤体渗透率测试试验。引入平均有效应力参数表征煤体受载状态,同时为消除试件个体差异的影响,定义了有效应力敏感系数,深入探讨有效应力对煤体渗透率的控制机理与变化规律。结果表明:瓦斯压力保持恒定时,随着有效应力增加煤体渗透率逐渐减小,其变化规律符合负指数关系;随着有效应力的增加敏感系数逐减小,且符合幂函数关系。基于敏感系数构建了煤样渗透率与有效应力的数学模型。  相似文献   

6.
裂隙产状是影响瓦斯抽采钻孔孔周煤体渗流状态的重要因素之一。为探究裂隙的不同产状对煤体渗流特性的影响,分别制作了含有1,2,3条裂隙共5种产状的煤样;利用自主设计的三轴渗流试验系统,采用稳态渗透法对煤样进行渗流试验研究,得到了三轴应力下裂隙煤体的渗流雷诺数、渗透率和Forchheimer数变化趋势,并分析了裂隙煤体非Darcy渗流的演化规律。结果表明:① 渗流试验过程中,42%的渗流雷诺数分布在10~100,且渗流趋势符合非线性渗流特点;说明随着裂隙面面积的增大,流动过程中黏滞阻力和惯性力对流速的影响越来越大,其发生非Darcy渗流的可能性就越高;② 通过分析裂隙煤体受力状况,得到裂隙煤样渗透率k随着有效应力σ的增加呈下降趋势,且符合k=aσ-b关系;说明随着应力水平的增加,煤样内部部分裂隙发生闭合、渗流通道数目和宽度的减少,最终导致渗透率急剧降低;③ 通过计算各个阶段的Forchheimer数Fo,得到Fo与渗流速度v符合二次曲线规律增长,且随着Fo的增加非Darcy渗流效应也越来越显著,说明裂隙煤样渗透性的增强是导致发生高速非Darcy渗流的根本原因。结合以上结论,可在煤层瓦斯预抽工作中,依据钻孔孔周煤体瓦斯流动规律准确确定抽采钻孔影响范围,从而为钻孔布孔方式的设计提供重要的理论依据。  相似文献   

7.
载荷作用下煤体变形与渗透性的相关性研究   总被引:4,自引:0,他引:4       下载免费PDF全文
祝捷  姜耀东  孟磊  赵毅鑫 《煤炭学报》2012,37(6):984-988
利用含瓦斯煤热流固耦合三轴伺服渗流装置,进行了不同气体压力作用下煤样全应力应变过程的瓦斯渗流实验。实验结果显示,煤样渗透率与变形之间存在内在关联,渗透率变化呈现阶段性特点。基于考虑气体吸附性的含瓦斯煤有效应力,建立了加载煤样变形与渗透率的相关性模型,研究受荷煤样变形与瓦斯渗流的相互关系。理论分析表明:当应力控制边界条件时,渗透率与煤样变形密切相关;煤样渗透率的变化受到有效应力、煤样变形模量、孔隙率和气体吸附性的共同作用;有效应力系数是联系煤样变形和渗透率的关键参量。由于理论计算结果与实验曲线较为接近,因此模型反映了不同瓦斯压力下加载煤样变形与渗透率变化的基本特征。  相似文献   

8.
煤岩体的渗透特性与孔压梯度满足渗流失稳条件时,易引发突水和瓦斯突出灾害。破碎岩体长时间缓慢变形过程中,其渗透特性将随孔隙率的变化而发生改变,且破碎岩体不同粒径的配比会影响其渗透特性。采用Talbol级配理论,利用DDL600电子万能试验机、渗透仪等试验设备,设置五级轴向恒载加压,每级恒载加压下对应4种不同渗透压进行试验,探究不同粒径配比下的破碎砂岩渗透特性。试验结果表明:① 轴向荷载从第1级加载至第5级,随着缸筒内破碎砂岩有效应力的增大,描述渗流速度变化的参数Dv均呈减小趋势;② 恒载变形后期,破碎砂岩随孔隙率减小,其渗透率总体呈减小趋势,而非Darcy流β因子的绝对值增加;③ 不同Talbol幂指数的破碎砂岩,渗透率与非Darcy流β因子的大小存在差异,n=0.5时,破碎砂岩渗透率最小,非Darcy流β因子最大,n=1.0时,破碎砂岩渗透率最大,非Darcy流β因子整体较小。研究可见,破碎砂岩颗粒粒径很小或颗粒破碎细化非常严重时,非Darcy流β因子较容易出现负值,破碎砂岩发生渗流失稳。  相似文献   

9.
循环载荷作用下煤体渗透率演化的实验分析   总被引:1,自引:0,他引:1       下载免费PDF全文
刘永茜 《煤炭学报》2019,44(8):2579-2588
多期次载荷作用下的煤体,其孔隙结构会发生复杂变化,渗透率也随之改变。然而,不同加卸载速率与循环周期决定着煤体渗透率变化路径,影响其应力敏感性,开展循环载荷控制下煤体渗透率演化规律研究,对于解释复杂应力场下煤层渗透率的各向异性特征有理论支撑作用。借助于煤层渗透率应力敏感模型分析,研究了影响煤体渗透率变化的关键表征参数及其函数关系;为验证关键参数对煤体渗透率影响,采用预定轴压和气压、加卸载围压的方式开展煤体三轴循环变载气体渗流实验,分析在不同围压(2.0~12.0 MPa)下煤体渗透率和体应变的演化规律;为研究煤体孔隙结构变化对渗透率的影响,通过低温氮气吸附实验和荧光显微镜煤样观测统计,完成了循环载荷加卸载前后煤体孔隙结构变化对比。研究结果表明,煤体加载/卸载过程中渗透率变化趋势与围压变化负相关,总体可以分为线性段、指数段和稳定段等3个阶段;随循环加载次数的增加煤体应变逐步增大,而渗透率却随之降低;相同条件下,煤体渗透率随体应变增加而升高,增幅在16.79%以上,而渗透率恢复率逐步降低,且与围压变化负相关;3次循环加卸载实验导致煤体孔隙结构发生了显著变化,微孔体积提高71.79%,比表面积增加52.19%,而平均孔径降低32.06%,但循环载荷没有改变煤体的最可几孔径;孔隙结构变化的数据表明,微孔体积增加是煤体渗透率劣化的重要标志之一。对比循环载荷作用前后的孔隙结构实验数据发现,影响气体吸附-解吸的孔隙结构变化,决定了"迟滞环"面积,而决定"迟滞环"形状的关键因素是由煤体最可几孔径控制的突变压力。另外,煤体应变包括裂隙体积变化和孔隙体积变化两部分,其中裂隙影响重要度指标(χ)反映了裂隙体积变化在煤体应变中的权重关系,χ变化随围压升高而降低。  相似文献   

10.
岩块间胶结结构的破坏是陷落柱诱发煤矿突水事故的重要因素之一。为研究胶结破碎煤岩体在三轴承压下的渗流稳定性,分别制作10组含有不同级配结构的煤样,利用自主设计的三轴渗流试验系统对胶结破碎煤岩体的渗透率k、非Darcy流β因子和失稳临界值进行试验测定。结果表明:1)不同Talbot指数n所对应的胶结破碎煤岩体孔隙结构不同,承压变形时其渗透率与有效应力满足函数关系:k=ae~(bσ_c),说明快速压密阶段主要影响的是初始孔隙率,后续结构重调整阶段骨架颗粒发生了剥落、破碎;2)当渗透率k下降到10~(-10)m~2以下、或非Darcy流β增加到10~6 m~(-1)时,都会引起渗流系统失稳,说明两者数量级的改变可诱发β因子突变到负值,其符号的变化可作为煤岩体渗流失稳的临界条件;3)高应力水平状态下,60%的级配结构在渗流过程中均出现失稳阶段,说明渗流参数是否满足βk~23.90×10~(-12)m~3,可作为预测煤矿突水事故的重要依据。  相似文献   

11.
煤体变形和瓦斯渗流的耦合作用是煤矿瓦斯突出机理研究中的重要问题,煤渗透率的变化与其应力状态密切相关。为了理清有效围压对煤体渗透性的影响,对煤样进行了不同瓦斯压力下全应力应变过程的渗透性实验,分析了瓦斯压力对煤样强度和渗透率的影响;针对不同瓦斯压力,设计完成了相同有效围压下三轴压缩力学实验(无瓦斯作用);并利用孔隙介质力学的分析方法,依据应力应变数据计算了煤样孔隙度。研究发现,有效围压相同条件下的煤样孔隙度计算结果与渗透率实验结果的变化趋势一致;在三轴压缩实验条件下,煤样峰值强度前的渗透率降低幅度受有效围压的控制,有效围压越高,渗透率所历经的降低幅度越大。  相似文献   

12.
采用损伤孔隙裂隙结构的方法可以提高煤体的渗透性。利用液氮冷加载实验,研究煤样孔隙裂隙结构损伤后的物理力学性质变化规律。通过卸载后煤样表面裂隙宽度、整体孔隙量的变化值,研究煤样结构损伤的物理性质,运用单轴抗压强度研究煤样结构损伤的力学性质,进而揭示液氮冷加载对煤样结构损伤的作用机理。结果表明:1)随着煤样围压的增加,煤样结构损伤程度逐渐加剧,12~13 MPa围压使煤样发生破碎;2)在注液氮条件下,冷加载加速了围压煤样结构的损伤,10~11 MPa围压下煤样发生破碎;3)煤样裂隙结构开裂方向与层理方向垂直,随着围压的增加,煤样单轴抗压强度逐渐降低,力学性能劣化。注液氮引起的温度应力可以加速煤体结构损伤,对煤体改性增透和预防冲击地压灾害提供了新的方法。  相似文献   

13.
代嘉惠 《煤炭技术》2020,39(6):122-125
为了探讨煤体渗透率的影响因素,利用损伤煤岩体渗流试验系统,进行了不同轴压、围压和瓦斯压力下煤体渗透率的渗流试验。试验结果表明:煤样在相同围压条件下时,渗透率与轴压的关系符合二次多项式函数;煤样在相同轴压条件下时,渗透率与围压的关系符合幂函数;在相同应力情况下,煤样的渗透率随瓦斯压力的升高先降低后升高,呈现"V"字形变化趋势,煤样的临界瓦斯压力值随煤样应力值的增大而增大;煤样轴向渗流的渗透率对围压的敏感性远大于轴压,渗透率对围压的敏感性大约是对轴压的敏感性的8.5倍。  相似文献   

14.
郭玥  郭辉 《山西煤炭》2023,(3):45-53
针对目前煤炭开采逐步转化为深部开采,瓦斯问题也日趋严重的现状,以预制裂隙煤体为研究对象,进行了三轴加载压缩试验和三轴渗流试验,研究了不同裂隙面积煤体在应力作用下的力学特性与渗流规律。试验结果表明:不同裂隙面积煤体在应力加载下的应力变化曲线基本趋于一致,试样在加载压缩阶段、压密阶段与弹性阶段几乎密不可分,在围压加载阶段已经完成试样的压密;根据测得的压力梯度与流速拟合结果发现,裂隙渗流有明显的非线性特征;随着有效围压的增大,渗透率K逐渐减小,非达西渗流因子β增大;随着裂隙面积的增加,渗透率K逐渐减小,非达西渗流因子β也逐渐减小。  相似文献   

15.
为研究破碎矸石变形后的渗流规律,利用渗透仪、液压泵等组成的渗流系统,在DDL600电子万能试验机上采用分级加载方式,对5种不同粒径破碎矸石进行了蠕变过程中的渗流试验,得到了各级应力水平下岩样的渗透参数,及其Kelvin-Volgt蠕变模型中的各特征参数E0,E1,η1,并对其变化规律进行了分析。结果表明:1)不同粒径岩样随着应力水平的变化,其孔隙度大小差异逐渐减小,同一应力水平下,颗粒间的相互调整随时间推移逐渐停止;2)破碎岩样的蠕变参数E0,E1,η1均随应力水平的提高而增大,小粒径矸石的比面较大,在压缩过程中与其他粒径岩样相比其轴向变形小、蠕变参数E0大,大粒径矸石颗粒间的充填效果明显且其变形大,孔隙连通性减弱,渗流时黏滞阻力大;3)随着孔隙度减小,岩样的渗透率与非Darcy流β因子的绝对值两者近似呈反比关系。破碎矸石密实度越大非Darcy流特性越显著,当颗粒细化程度较大时,破碎矸石渗流过程中易发生渗流失稳。  相似文献   

16.
《煤矿安全》2015,(7):1-4
以孔隙率不同的构造煤原煤煤样为研究对象,利用三轴应力渗流装置进行了瓦斯渗透性实验,结果表明,在恒温条件下,构造煤的瓦斯渗透性随着煤体孔隙率的增加而增大,并且渗透率K0与孔隙率σ之间呈现二次函数关系,即K0=ασ2+βσ+δ;温度恒定时,构造煤的瓦斯渗透性随平均有效应力的增加而逐渐减小,且孔隙率较大的构造煤的渗透率变化幅度较大;平均有效应力不变时,同一孔隙率的构造煤随着温度的增加,瓦斯渗透率降低,且孔隙率对构造煤瓦斯渗透率的影响比温度对构造煤瓦斯渗透率的影响明显。  相似文献   

17.
《煤矿安全》2015,(10):11-14
利用三轴应力渗流实验装置对坚固性系数为0.3的构造煤原煤煤样进行了加压破坏以及负压条件下含瓦斯构造煤原煤煤样的瓦斯渗透性实验研究。结果表明,坚固性系数为0.3的构造煤原煤样的压裂过程经历了非线性压密阶段、线弹性阶段、应变强化阶段、应力跌落阶段和应变软化阶段等5个阶段。在围压、瓦斯压力一定,同一轴压条件下,加载负压时的煤体瓦斯渗透率要大于不加载负压时的煤体瓦斯渗透率,随着负压增大瓦斯渗透率随之增大。在围压、瓦斯压力一定,同一负压条件下,随着轴压的增大,瓦斯渗透率先逐渐增大到一定峰值后逐渐减小。在围压、负压一定,同一轴压条件下,瓦斯压力越大,煤体的瓦斯渗透率越小。在围压、负压、瓦斯压力一定的条件下,轴压加载到σo值后,开始卸载轴压,随着轴压的卸载煤体瓦斯渗透率逐渐增大,在轴压卸载的初始阶段,渗透率增幅较大;随后在轴压卸载完全的过程中,渗透率的增幅越来越不明显,并且轴压卸载为0时的渗透率要小于煤样试件在加载轴压前的初始渗透率。  相似文献   

18.
为探究煤层注水时水在煤体中的渗流演化规律,采用实验室试验与数值模拟结合的方法,开展了地应力及孔隙水压力耦合作用下煤体结构变形及渗透率演化规律试验,并建立了水力耦合下体积变形演化数学模型,基于UDF二次开发进行了煤岩注水渗流动态演化数值模拟。研究结果表明:煤岩孔隙率变化受应力与水压共同作用的影响;煤岩轴向变形量与水压分布由上至下呈递减式传递,体积变形与轴向力、孔隙水压大小成正相关;孔隙水压为赋存于孔裂隙的自由水提供渗透动力,并对煤岩基质骨架产生力学作用,水压越大,煤岩基质骨架越容易破坏;采用UDF程序加载渗透性试验结果对孔隙率随孔隙水压变化进行拟合的结果更接近试验结果,误差较小,对于研究煤岩渗流规律可以提供一定的参考。  相似文献   

19.
为实现深部煤层气的高效开采,通过研究不同温度、围压和气体压力下煤体蠕变变形和渗透率演化规律,得到多因素作用下煤体蠕变-渗流耦合关系;采用自行设计的岩石三轴蠕变-渗流装置,对焦煤进行多因素变量下的压缩蠕变-渗流试验。结果表明:温度与煤样的蠕变呈正相关性,随温度的增加焦煤煤样径向和轴向应变变化速率增大且高温(110℃)下这种变化会一直持续直至煤样破裂;围压强度3 MPa与4 MPa的焦煤煤样在温度30、70、110℃下其气体渗透率降低率最大和最小差值分别为7.8%、5.2%、6.5%和4.2%、2.1%、1.9%;焦煤煤样的渗透率最大降低率随着温度水平升高而增大,试验温度110、70、30℃下的焦煤煤样的气体渗透率最大降低率均值依次为91%、84.6%、73.25%。  相似文献   

20.
三轴加载煤体瓦斯渗流速度-温度联合响应特征   总被引:1,自引:0,他引:1       下载免费PDF全文
瓦斯渗流速度及温度响应能反映出受载煤体内部结构和能量的变化,可以作为煤与瓦斯突出预警信号。以型煤为研究对象,利用自主研发的含瓦斯煤受载破坏试验系统测定了三轴加载条件下煤体的瓦斯渗流速度及温度联合响应规律,分析了加载速率对瓦斯渗流速度和温度影响效应,建立了瓦斯渗流速度及温度与突出煤失稳破坏之间的关系。实验结果表明:(1)在整个加载过程中,瓦斯渗流速度表现出先减小后增大的趋势,在应力峰值处渗流速度出现突变点;随着加载速率的增加,瓦斯最小渗流速度V_(min)呈现出先减小后增大趋势,而瓦斯渗流速度变化量(V_(max)-V_(min))则先增加后减小;(2)随着加载应力的升高,瓦斯渗流温度呈线性增大趋势;瓦斯渗流温度变化差值(T_(max)-T_(min))随着加载速率的增大而逐渐减小;(3)加载速率较低时,约在煤样宏观破裂80%处渗流速度出现"平静期",而加载速度较高时,渗流温度在破裂前出现多次波动且有较长的"平静期",可作为突出煤失稳破坏的有效预警信息。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号