首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
弹道目标再入段的运动受到空气阻力、重力等力的影响,具有明显的非线性特征.传统的卡尔曼滤波是线性、高斯问题的最优滤波器,但无法处理非线性的估计问题.扩展卡尔曼滤波利用泰勒级数展开把非线性方程线性化,是解决非线性估计问题的有效算法;而近些年来出现的粒子滤波以其解决非线性问题的卓越性能,得到了迅速发展.文章对弹道目标再入段的运动特征进行研究,建立了目标的状态空间模型,并应用扩展卡尔曼滤波和粒子滤波实现了对弹道目标的跟踪.通过比较仿真结果,证明粒子滤波比扩展卡尔曼滤波精度更高,对噪声的抑制能力更强,也更稳定.因而具有重大的研究意义.  相似文献   

2.
提出一种利用最近的目标轨迹信息自适应调整运动模型的粒子滤波方法,根据背景地形或道路信息建立若干目标轨迹模式,然后利用目标轨迹模式将最近的目标轨迹进行分类,通过与当前目标最近段轨迹匹配的目标轨迹类,获得当前目标在下一时刻状态后验概率分布对应的粒子.实验结果表明该方法具有较强的鲁棒性,能有效实现复杂场景下的目标跟踪.  相似文献   

3.
基于粒子滤波的空-地目标跟踪算法   总被引:4,自引:4,他引:0  
宋策  张葆  尹传历  王超 《光电子.激光》2013,(10):2017-2023
针对空-地目标跟踪中目标大幅度变速运动而引 起的跟踪失败问题,基于Kristan等人提出的双步(TS)动态模型框架,对空-地目标跟 踪中目标运动特点进行分析与建模,改进TS模型中 的保守模型以适应加速运动,提出适于描述大幅度变速运动的加速度双步(TSA)动态模型作 为粒子滤波(PF)跟踪算法的动态模 型,实现对粒子状态的精确预测,进而达到使用较少粒子即可对目标鲁棒跟踪的目的。对空 -地目标跟踪的测试视频进行测 试,结果表明,本文算法可对大幅度变速运动目标稳定跟踪,正确跟踪率为92%,对目标 尺寸约为25pixel×30pixel时的处理帧率为29frame/s。本文算法具有较好的鲁棒性与实时性。  相似文献   

4.
基于卡尔曼粒子滤波的目标跟踪算法   总被引:1,自引:0,他引:1  
万顷浪  张殿福 《电子科技》2013,26(8):7-9,12
目标跟踪在计算机视觉领域有着重要的应用。文中在对运动目标跟踪算法进行研究之后,应用卡尔曼粒子滤波算法进行运动目标的跟踪,同时利用Matlab 对卡尔曼滤波算法、粒子滤波算法及卡尔曼粒子滤波算法进行了实验仿真。实验结果表明,运用卡尔曼粒子滤波算法能够更快、更准确地对运动目标进行跟踪,可将其广泛应用于目标跟踪中。  相似文献   

5.
万九卿  梁旭  马志峰 《电子学报》2011,39(3):602-608
针对红外目标跟踪问题,提出一种混合观测模型以描述日标像素灰度的渐变以及目标的突然消失或复现,采用在线EM算法对观测模型参数进行更新;将自适应观测模型与交互多模型粒子滤波相结合用于目标跟踪;基于概率排斥原则改进了似然函数,将上述算法推广到多目标跟踪领域.单目标和多目标跟踪仿真结果验证了所提算法的有效性.  相似文献   

6.
基于自适应无迹粒子滤波的目标跟踪算法   总被引:5,自引:5,他引:0  
为解决复杂场景中目标跟踪问题,提出了一种噪声未知情况下的自适应无迹粒子滤波(A-UPF)算法。算法采用改进的Sage-Husa估计器对系统未知噪声的统计特性进行实时估计和修正,并与无迹Kalman粒子滤波器相结合产生优选的建议分布函数,降低系统估计误差的同时有效提升了系统的抗噪声能力。实验结果表明,本文方法对于复杂条件下的目标跟踪问题具有较高的精度和较强的鲁棒性。  相似文献   

7.
针对在非线性机动目标跟踪中存在的滤波器易发散,跟踪误差大等问题,在双机协同跟踪的基础上,提出了利用交互式多模型粒子滤波(IMMPF)对空中机动目标进行跟踪的算法.该算法将粒子滤波和交互多模型有效结合,基本解决了非线性机动目标跟踪中存在的问题.通过仿真表明,与扩展卡尔曼滤波(EKF)和交互式模型扩展卡尔曼滤波(IMMEKF)相比,IMMPF能够降低跟踪误差,提高收敛速度,且有很强的鲁棒性.  相似文献   

8.
针对目标跟踪方法,本研究提出了一种基于运动特征和颜色特征多特征融合的粒子滤波跟踪方法,在颜色直方图描述颜色特征的基础上,融合了目标的运动特征,验证了通过增加对目标特征描述信息,可以提高跟踪健壮性以及可靠性。  相似文献   

9.
针对基于粒子滤波的视频目标跟踪算法中由于粒子重采样过程而导致粒子贫化的问题,提出了一种基于人工蜂群算法的粒子滤波目标跟踪算法,利用群体智能的特点使得粒子集在重采样前得到优化,保持了粒子的多样性,从而解决了粒子贫化问题,同时增加了有效粒子的数目.实验结果表明,基于人工蜂群算法的粒子滤波跟踪算法,比标准粒子滤波跟踪算法所需粒子数更少,对目标遮挡、较复杂背景有较好的跟踪效果.  相似文献   

10.
基于粒子滤波的红外目标跟踪   总被引:29,自引:3,他引:29       下载免费PDF全文
粒子滤波(Partic le F ilter)是一种处理非线性和非高斯动态系统状态估计的有效技术.提出了一种基于粒子滤波的红外目标稳健跟踪新方法.在粒子滤波理论框架下,红外目标的状态后验概率分布用加权随机样本集表示,通过这些随机样本的Bayesian迭代进化实现红外目标的跟踪.系统状态转移模型选择为简单的二阶自回归模型,并自适应地确定系统噪声方差.红外目标的描述利用目标区域的灰度分布,该灰度分布通过核概率密度估计建立.通过计算参考目标的灰度分布和目标样本的灰度分布之间的Bhattacharyya距离,建立系统观测概率模型.实验结果表明该方法是有效的和稳健的.  相似文献   

11.
基于概率图模型目标建模的视觉跟踪算法   总被引:2,自引:0,他引:2  
提出了一种视觉跟踪任务中基于局部特征和概率图模型的目标建模方法,将目标表示为一组具有仿射不变性的区域特征,并通过概率图模型描述特征之间的空间约束关系。在目标跟踪过程中,首先在空域上利用信任传播算法,推断概率图模型中各个特征的状态,然后根据推断的结果设计改进的重要性采样函数,采用粒子滤波算法在时间域上对目标进行跟踪。为了适应目标在运动中的变化,模型根据特征的稳定程度自适应地进行更新。实验结果表明,该方法具有较强的鲁棒性,能够有效实现复杂场景下的目标跟踪。  相似文献   

12.
基于贝叶斯理论的分布式多视角目标跟踪算法   总被引:1,自引:0,他引:1       下载免费PDF全文
冯巍  胡波  杨成  林青  杨涛 《电子学报》2011,39(2):315-321
 为了有效解决传统单视角跟踪难于处理的目标遮挡问题,本文提出了一种分布式多视角目标跟踪算法. 该算法首先基于贝叶斯理论,为多视角目标跟踪问题建立了分布式数据融合的概率框架;并利用粒子滤波器对所需后验概率进行近似,提出了自适应的观测模型和状态转移模型. 各摄像机能够并行化地进行数据采集、处理、融合,而无需集中式处理单元;能够有效避免遮挡造成的误差传递,提高跟踪算法的鲁棒性. 实验证明了本文算法的有效性.  相似文献   

13.
针对非线性系统噪声未知时粒子滤波容易发散或者精度下降的问题,提出一种粒子滤波和改进的Sage-Husa估计器相结合的混合滤波算法。首先用粒子滤波对系统状态进行初步估计,将初步估计值作为次级Sage-Husa滤波器的输入量测值,并与系统状态方程组成新的系统,进而用改进的Sage-Husa算法实时估计系统噪声的统计特性并进行滤波,得到最终的系统状态估计值;为了进一步比较算法的性能,对算法的复杂度进行了定量计算,分析表明优化的算法并未明显提高算法的计算量;最后通过目标跟踪仿真实验验证了算法的有效性。  相似文献   

14.
张瑞 《无线电通信技术》2011,37(2):29-31,50
采用粒子滤波算法解决运动目标跟踪中非线性非高斯问题。将均值漂移算法嵌入到粒子滤波的采样阶段中,通过将每个粒子聚集到所在区域的局部极值,提高了采样粒子的使用效率。当发生目标遮挡时采用改进的粒子滤波算法,当无遮挡时采用均值漂移算法以提高速度。实验结果表明,该方法较传统单一算法具有较强的实时性和鲁棒性,能够有效实现在遮挡场景下的目标跟踪。  相似文献   

15.
刘敏  陈恩庆  杨守义 《电视技术》2012,36(9):108-111
针对传统卡尔曼滤波(KF)及扩展卡尔曼滤波(EKF)在非线性目标跟踪模型中,跟踪精度较差的问题,本文给出了一种基于正则化粒子滤波( RPF)的水下目标跟踪算法.文中在一种模拟水下目标跟踪环境的非线性动态模型中对所提出的算法进行了仿真试验,并将其跟踪性能与扩展卡尔曼滤波和标准粒子滤波算法(PF)进行了比较.仿真结果表明,PF算法比EKF算法滤波精度更高,RPF的跟踪性能优于PF和RPF,而且随着粒子数的增加,PF和RPF的跟踪性能也不断提高.  相似文献   

16.
针对非高斯、强噪声背景下的高机动目标实施跟踪时,卡尔曼滤波、扩展卡尔曼滤波等算法将出现滤波精度下降甚至发散现象。粒子滤波方法作为一种基于贝叶斯估计的非线性滤波算法,在处理非高斯非线性时变系统的参数估计和状态滤波问题方面有独到的优势。以目标跟踪问题为背景,将粒子滤波与卡尔曼滤波算法进行了对比研究。  相似文献   

17.
姜珊  张超  韩成  底晓强 《红外与激光工程》2021,50(2):20200182-1-20200182-12
近年来,相关滤波方法由于具备运算速度快,鲁棒性强的优势,在目标跟踪领域发展迅速。然而,面对复杂场景时,现有模型难以满足实际需求。针对背景感知相关滤波方法(BACF)在目标发生自身旋转、尺度变换、运动出视野等挑战下,相关滤波器最大响应值减弱,造成跟踪精度下降的问题,提出了一种基于相关滤波的目标重检测跟踪方法。在原有背景感知相关滤波方法的基础上,引入滤波器响应检测机制,当判定到相关滤波跟踪结果不可信时,利用粒子滤波采样策略生成大量粒子,感知目标状态,重新确定目标中心位置。在此基础上,利用自适应尺度估计机制重新计算目标尺度信息,从而实现对目标的重新跟踪。为了验证改进算法的有效性,实验选取了OTB2013、OTB2015、VOT2016共3个公开数据集进行测试,同时与相关滤波及深度学习方法进行对比,从视频属性、跟踪精确度、算法鲁棒性等角度展示所有算法的性能。实验结果表明:基于相关滤波的目标重检测跟踪方法在3个公开数据集中取得较好的实验结果,并在目标发生旋转,尺度变换及运动超出视野的情况下,有效提高了BACF的准确率和成功率。  相似文献   

18.
文中设计研制了一种新型的基于仿射变换模型的实时图像跟踪系统。本跟踪系统已经通过实践检验,能够稳定的、准确的、快速的跟踪目标。并且系统有很大的升级潜力,除了能够满足仿射变换跟踪的要求之外,还能适用于其他的一些算法,构成鲁棒性更强的图像跟踪系统。实践证明该跟踪系统性能优于经典的相关跟踪系统。  相似文献   

19.
邵春艳  丁庆海  罗海波  李玉莲 《红外与激光工程》2016,45(4):428002-0428002(10)
根据刚体各部位具有变换一致性这一特性,提出一种采用高维数据聚类的目标跟踪方法。从数学理论方面证明提出的度量方法可以应用于目标跟踪, 称其为高维数据聚类跟踪器(HDDC tracker)。该算法框架如下,首先, 采用Harris检测器对模板与跟踪区域进行特征提取;然后利用这些特征的空间信息对所提取的特征进行编组;接着计算模板特征组与跟踪区域特征组间的仿射变换阵;最后,采用高维数据聚类对这些仿射变换阵进行度量, 将那些相似仿射阵对应的跟踪区域作为跟踪目标。实验表明: HDDC tracker能够有效地跟踪具有仿射形变的目标,并且性能优于先进跟踪算法。  相似文献   

20.
In this paper we propose fusion methods for tracking a single target in a sensor network. The sensors use sequential Monte Carlo (SMC) techniques to process the received measurements and obtain random measures of the unknown states. We apply standard particle filtering (SPF) and cost-reference particle filtering (CRPF) methods. For both types of filtering, the random measures contain particles drawn from the state space. Associated to the particles, the SPF has weights representing probability masses, while the CRPF has user-defined costs measuring the quality of the particles. Summaries of the random measures are sent to the fusion center which combines them into a global summary. Similarly, the fusion center may send a global summary to the individual sensors that use it for improved tracking. Through extensive simulations and comparisons with other methods, we study the performance of the proposed algorithms. This work has been supported by the National Science Foundation under Award CCF-0515246 and the Office of Naval Research under Award N00014-06-1-0012.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号