首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dielectric constant and the leakage current density of (Ba, Sr)TiO3 (BST) thin films deposited on various bottom electrode materials (Pt, Ir, IrO2/Ir, Ru, RuO2/Ru) before and after annealing in O2 ambient were investigated. The improvement of crystallinity of BST films deposited on various bottom electrodes was observed after the postannealing process. The dielectric constant and leakage current of the films mere also strongly dependent on the postannealing conditions. BST thin film deposited on Ir bottom electrode at 500°C, after 700°C annealing in O2 for 20 min, has the dielectric constant of 593, a loss tangent of 0.019 at 100 kHz, a leakage current density of 1.9×10 -8 A/cm2 at an electric field of 200 kV/cm with a delay time of 30 s, and a charge storage density of 53 fC/μm2 at an applied field of 100 kV/cm. The BST films deposited on Ir with post-annealing can obtain better dielectric properties than on other bottom electrodes in our experiments. And Ru electrode is unstable because the interdiffusion of Ru and Ti occurs at the interface between the BST and Ru after postannealing. The ten year lifetime of time-dependent dielectric breakdown (TDDB) studies indicate that BST on Pt, Ir, IrO2/Ir, Ru, and RuO2/Ru have long lifetimes over ten gears on operation at the voltage bias of 2 V  相似文献   

2.
Multisegment PtRu nanorods (Pt–Ru, Pt–Ru–Pt, Pt–Ru–Pt–Ru, Pt–Ru–Pt–Ru–Pt, Pt–Ru–Pt–Ru–Pt–Ru) with customizable lengths of the individual metals are obtained by the sequential electrodeposition of the metals into the pores of anodic aluminum oxide (AAO) membranes. Field‐emission scanning electron microscopy (FESEM) shows that the nanorods are about 200 nm in diameter and 1.2 μm long, with 900 nm of total platinum‐segment length. The alternating platinum and ruthenium segments can be easily differentiated using FESEM. X‐ray diffractometry reveals that the platinum and ruthenium in the bimetallic nanorods are polycrystalline with face‐centered cubic and hexagonal close‐packed crystal lattice structures, respectively. The presence of Pt0, PtII, PtIV, Ru0, and RuVI on the surface of the bimetallic nanorods is demonstrated via X‐ray photoelectron spectroscopy. The nanorods are catalytically active in the room‐temperature electro‐oxidation of methanol. The relative rates of reaction, recorded using chronoamperometry, show a linear relationship between the long‐time (near‐steady‐state) current density and the number of Pt–Ru interfaces. The use of segmented nanorods with a controlled number of Pt–Ru interfaces removes many of the ambiguities in the interpretation of experimental data from conventional alloy catalysts and has provided a direct demonstration of the role of pair sites in bifunctional catalysis.  相似文献   

3.
A pine‐shaped Pt nanostructured electrode with under‐water superaerophobicity for ultrahigh and steady hydrogen evolution reaction (HER) performance is successfully fabricated by a facile and easily scalable electrodeposition technique. Due to the lower bubble adhesive force (11.5 ± 1.2 μN), the higher bubble contact angle (161.3° ± 3.4°) in aqueous solution, and the smaller size of bubbles release for pine‐shaped Pt nanostructured electrode, the incomparable under‐water superaerophobicity for final repellence of bubbles from submerged surface with ease, is successfully achieved, compared to that for nanosphere electrode and for Pt flat electrode. With the merits of superior under‐water superaerophobicity and excellent nanoarray morphology, pine‐shaped Pt nanostructured electrode with the ultrahigh electrocatalytic HER performance, excellent durability, no obvious current fluctuation, and dramatically fast current density increase at overpotential range (3.85 mA mV?1, 2.55 and 13.75 times higher than that for nanosphere electrode and for Pt flat electrode, respectively), is obtained, much superior to Pt nanosphere and flat electrodes. The successful introduction of under‐water superaerophobicity to in‐time repel as‐formed H2 bubbles may open up a new pathway for designing more efficient electrocatalysts with potentially practical utilization in the near future.  相似文献   

4.
The preparation of modified, catalytically active, functional carbon electrodes and their application to the electrochemical reduction of trinitrotoluene (TNT) is reported. Modification of the electrodes is performed with composites of nanometer‐sized, mesoporous titanium dioxide, which acts as a support containing inserted/deposited nanoparticles of ruthenium, platinum, or gold. These composites are prepared by a novel sonochemical synthesis using simple and low‐cost precursors. Cyclic voltammetry shows that 2,4,6‐trinitrotoluene can be reduced on thus‐modified carbon‐paper electrodes at potentials of around –0.5 V (vs. Ag/AgCl/Cl) in aqueous solutions. Unexpectedly, carbon‐paper electrodes modified with the TiO2/nano‐Pt composites demonstrate a remarkable electrochemical activity toward the reduction of trinitrotoluene. A significant finding is that the two electrode processes—the reduction of TNT and of oxygen—are quite well separated in potential on the modified carbon‐paper electrodes because of selective electrochemical activity of the TiO2/nano‐Pt and TiO2/nano‐Au composites. TiO2/nano‐Ru composites are found to be much less electrochemically active for the detection of TNT compared to the previous two. It was also established that the titanium dioxide support of TiO2/nano‐Pt composites plays a specific role for facilitating the TNT‐ and oxygen‐reduction processes.  相似文献   

5.
Fabrication of hierarchical materials, with highly optimized features from the millimeter to the nanometer scale, is crucial for applications in diverse areas including biosensing, energy storage, photovoltaics, and tissue engineering. In the past, complex material architectures have been achieved using a combination of top‐down and bottom‐up fabrication approaches. A remaining challenge, however, is the rapid, inexpensive, and simple fabrication of such materials systems using bench‐top prototyping methods. To address this challenge, the properties of hierarchically structured electrodes are developed and investigated by combining three bench‐top techniques: top‐down electrode patterning using vinyl masks created by a computer‐aided design (CAD)‐driven cutter, thin film micro/nanostructuring using a shrinkable polymer substrate, and tunable electrodeposition of conductive materials. By combining these methods, controllable electrode arrays are created with features in three distinct length scales: 40 μm to 1 mm, 50 nm to 10 μm, and 20 nm to 2 μm. The electrical and electrochemical properties of these electrodes are analyzed and it is demonstrated that they are excellent candidates for next generation low‐cost electrochemical and electronic devices.  相似文献   

6.
An experimental/computation investigation was carried out to develop a MEMS-based micro cooling device to provide direct cooling to high heat flux electronics and MEMS devices. This device uses the electrohydrodynamic principles to pump and form an ultra thin film over a heated surface that requires cooling. The important part is played by applying an electric field to a set of interdigitated inclined electrodes to pump and form a thin film and to remove heat by thin film evaporation process. The dimension of the active electrode area of the device was 32×32 mm2. The electrodes were separated by a distance of 20 μm at the bottom and 60 μm at the top. The electrodes were connected to a single common electrode at the top and bottom. Static pumping pressure and heat transfer experiments were performed using 3M's HFE-7100 thermal fluid manufactured by the 3M Corporation. Due to the small gap between electrodes (20 μm) all experiments were performed inside a class 100 cleanroom. Cooling rates of 35 W/cm2 were obtained at a superheat of 19 °C.  相似文献   

7.
采用直流磁控溅射方法在SiO2/Si衬底上制备出Pt/Ti和Pt/TiOx底电极。用XRD分析其晶相结构,用AFM测量其晶粒尺寸和表面粗糙度。结果表明,用TiOx层代替金属Ti后,能有效地抑制在高温环境下Ti原子向Pt层扩散,使电极表面粗糙度减小(粗糙度为2.99 nm)。  相似文献   

8.
The influence of bottom electrodes (Pt, Ir, Ru) on the degradation of (Ba,Sr)TiO3 (BST) thin films under dc stress conditions was investigated. The current-time (I-t) and current-voltage (I-V) measurement results indicated that the BST thin films deposited on Ru have faster degradation than those deposited on Pt and Ir. The degradation was considered to be caused by the deterioration of the Schottky-barrier. Under dc stress conditions, the dielectric relaxation current in the BST dielectric films probably enhances the deterioration. The breakdown time was found to be approximated by an exponential function of an electric field [tB=α exp(-βE)] for dc stress. The value of the exponential factor β for BST deposited on Pt and Ir was about a quarter of that for BST deposited on Ru. The different value of β observed under dc stress indicates that the degradation of BST on Ru would be more serious than on Pt and Ir. The ten years lifetime of time-dependent dielectric breakdown (TDDB) studies indicate that BST on Pt, Ir and Ru have longer lifetime over ten years for operation at the voltage bias of 1 V  相似文献   

9.
Platinum‐nanoparticle‐functionalized, ordered, porous support electrodes are prepared and characterized as a potential new class of oxygen reduction reaction (ORR) electrocatalysts. This study aims to develop electrode materials that enhance the effective utilization of Pt in electrocatalytic reactions through improved mass transport properties, high Pt mass specific surface area, and increased Pt electrochemical stability. The electrodes are prepared using modular sacrificial templates, producing a uniform distribution of Pt nanoparticles inside ordered porous Au electrodes. This method can be further fine‐tuned to optimize the architecture for a range of characteristics, such as varying nanoparticle properties, pore size, or support material. The Pt‐coated Au, ordered, porous electrodes exhibit several improved characteristics, such as enhanced Pt effective utilization for ORR electrocatalysis. This includes a nearly twofold increase in Pt mass specific surface area over other ultrathin designs, superior mass transport properties in comparison to traditional catalyst layers of C black supported Pt nanoparticles mixed with ionomer, good methanol tolerance and exceptional stability toward Pt chemical and/or electrochemical dissolution through interfacial interactions with Au. The methods to prepare Pt‐coated ordered porous electrodes can be extended to other architectures for enhanced catalyst utilization and improved performance of Pt in electrochemical processes.  相似文献   

10.
设计制作了片上集成三电极体系微电极阵列。工作电极分为圆形和方形两种,电极特征尺寸为100~900μm,工作电极与对电极间距为50~200μm。利用循环伏安法,在氧化还原电位探针二茂铁甲醇的作用下,对各三电极微系统进行了电极性能表征,具体分析了工作电极的形状、大小、与对电极的间距对输出特性的影响,为片上集成三电极体系的微电极阵列的设计优化提供了实际依据。  相似文献   

11.
微流控芯片在分析化学和生物检测方面有着广阔的应用前景。对集成电极的PDMS-玻璃微流控芯片的制备工艺进行了研究与分析。最终使用SU-8快速制备阳模,使用PDMS转移图形得到具有微流控通道的PDMS盖片;在玻璃基板上加工Pt电极,除了需要外露的部分电极外,其他部分以薄层PDMS保护,得到电极基板;将PDMS盖片与电极基板半固化键合制得同时具有加热和温度传导电极以及CE高压电极的PDMS-玻璃芯片。ANSYS模拟分析证明加热芯片热惯性小,加热时温度分布效果好。  相似文献   

12.
铂黑/二茂铁修饰MEMS电极的葡萄糖传感器   总被引:1,自引:1,他引:0  
利用MEMS技术小批量加工了薄膜金电极。采用电化学沉积法在金电极表面修饰纳米铂黑颗粒,以有机功能性材料二茂铁作为电子媒介体,通过戊二醛-牛血清白蛋白共价交联固定葡萄糖氧化酶制得葡萄糖生物传感器。考察了不同修饰电极的电化学行为以及酶固定量和戊二醛浓度对传感器响应特性的影响。实验结果表明:该传感器响应时间仅为5s,在0.29V的低工作电压下,线性测量范围可达到0.5~22mmol/L,灵敏度为50.35μA/(cm2.mmol.L-1),相关系数为0.9925,差异系数为4.28%。  相似文献   

13.
Agglomerated Pt thin films have been proposed as electrodes for electrochemical devices like micro‐solid oxide fuel cells (μ‐SOFCs) operating at low temperatures. However, comprehensive studies elucidating the interplay between agglomeration state and electrochemical properties are lacking. In this contribution the electrochemical performance of agglomerated and “dense” Pt thin film electrodes on yttria‐stabilized‐zirconia (YSZ) is correlated with their microstructural characteristics. Besides the microscopically measurable triple‐phase‐boundary (tpb) where Pt, YSZ and air are in contact, a considerable contribution of “nanoscopic” tpbs to the electrode conductivity resulting from oxygen permeable grain boundaries is identified. It is demonstrated that “dense” Pt thin films are excellent electrodes provided their grain size and thickness are in the nanometer range. The results disprove the prevailing idea that the performance of Pt thin film electrodes results from microscopic and geometrically measurable tpbs only.  相似文献   

14.
Agglomerated Pt thin films have been proposed as electrodes for electrochemical devices like micro‐solid oxide fuel cells (μ‐SOFCs) operating at low temperatures. However, comprehensive studies elucidating the interplay between agglomeration state and electrochemical properties are lacking. In this contribution the electrochemical performance of agglomerated and “dense” Pt thin film electrodes on yttria‐stabilized‐zirconia (YSZ) is correlated with their microstructural characteristics. Besides the microscopically measurable triple‐phase‐boundary (tpb) where Pt, YSZ and air are in contact, a considerable contribution of “nanoscopic” tpbs to the electrode conductivity resulting from oxygen permeable grain boundaries is identified. It is demonstrated that “dense” Pt thin films are excellent electrodes provided their grain size and thickness are in the nanometer range. The results disprove the prevailing idea that the performance of Pt thin film electrodes results from microscopic and geometrically measurable tpbs only.  相似文献   

15.
结合丝网印刷技术、烘烤工艺和烧结工艺,采用印刷ZnO层和银浆层相结合的方案,进行了分段复合衬底电极的制作。该分段复合衬底电极能够降低无效的阴极电压降,增强三极场发射显示器的发光亮度并改善其发光均匀性,且制作成本低廉。分段复合衬底电极避免了过长过细衬底电极现象,促使碳纳米管提供更多电子,同时有效改善了碳纳米管的场发射均匀性。利用碳纳米管作为阴极材料,进行了三极场发射显示器的研制,并进行点阵图像显示,从而证实了这种分段复合衬底电极制作工艺的可行性。与普通银电极场发射显示器相比,分段复合衬底电极场发射显示器能够将开启场强从1.92 V/μm降低到1.81 V/μm,其最大场发射电流由1 332.5μA提高到2 137.8μA,具有典型的场致发射特性以及优良的图像发光均匀性。  相似文献   

16.
The efficacy of electrical brain stimulation in combatting neurodegenerative diseases and initiating function is expected to be significantly enhanced with the development of smaller scale microstimulation electrodes and refined stimulation protocols. These benefits cannot be realized without a thorough understanding of scaling effects on electrochemical charge injection characteristics. This study fabricates and characterizes the electrochemical stimulation capabilities of Au, Pt, poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS/Au), and PEDOT:PSS/Pt electrode arrays in the 20–2000 µm diameter range. This study observes substantial enhancement in charge injection capacity up to 9.5× for PEDOT:PSS microelectrodes compared to metal ones, and 88% lower required power for injecting the same charge density. These significant benefits are strongest for electrode diameters below 200 µm. Detailed quantitative analyses are provided, enabling optimization of charge injection capacity with potential bias and symmetric and asymmetric pulse width engineering for all diameters. These systematic analyses inform the optimal design for acute and potentially chronic implants in regards to safety and clinically effective stimulation protocols, ensure the longevity of the electrodes below critical electrochemical limits of stimulation, and demonstrate that the material choice and pulse design can lead to more energy efficiency stimulation protocols that are of critical importance for fully implanted devices.  相似文献   

17.
针对紫外探测器在紫外-红外双色探测器中的工程化应用需求,开展了Pt/CdS肖特基紫外探测器研究,通过对CdS晶片表面处理工艺、Pt电极制备及紫外芯片退火等关键技术进行优化研究,并对Pt/CdS肖特基紫外探测器性能进行测试分析。测试结果表明: Pt/CdS肖特基紫外探测器在0.3~0.5 μm下响应率大于0.2 A/W,对3~5 μm红外波长的平均透过率大于80%,很好地满足了紫外-红外双色探测器中的工程化应用要求。  相似文献   

18.
Bioelectronic interfaces require electrodes that are mechanically flexible and chemically inert. Flexibility allows pristine electrode contact to skin and tissue, and chemical inertness prevents electrodes from reacting with biological fluids and living tissues. Therefore, flexible gold electrodes are ideal for bioimpedance and biopotential measurements such as bioimpedance tomography, electrocardiography (ECG), electroencephalography (EEG), and electromyography (EMG). However, a manufacturing process to fabricate gold electrode arrays on plastic substrates is still elusive. In this work, a fabrication and low‐temperature sintering (≈200 °C) technique is demonstrated to fabricate gold electrodes. At low‐temperature sintering conditions, lines of different widths demonstrate different sintering speeds. Therefore, the sintering condition is targeted toward the widest feature in the design layout. Manufactured electrodes show minimum feature size of 62 μm and conductivity values of 5 × 10 6 S m?1. Utilizing the versatility of printing and plastic electronic processes, electrode arrays consisting of 31 electrodes with electrode‐to‐electrode spacing ranging from 2 to 7 mm are fabricated and used for impedance mapping of conformal surfaces at 15 kHz. Overall, the fabrication process of an inkjet‐printed gold electrode array that is electrically reproducible, mechanically robust, and promising for bioimpedance and biopotential measurements is demonstrated.  相似文献   

19.
A working electrode design based on a highly porous 1D photonic crystal structure that opens the path towards high photocurrents in thin, transparent, dye‐sensitized solar cells is presented. By enlarging the average pore size with respect to previous photonic crystal designs, the new working electrode not only increases the device photocurrent, as predicted by theoretical models, but also allows the observation of an unprecedented boost of the cell photovoltage, which can be attributed to structural modifications caused during the integration of the photonic crystal. These synergic effects yield conversion efficiencies of around 3.5% by using just 2 μm thick electrodes, with enhancements between 100% and 150% with respect to reference cells of the same thickness.  相似文献   

20.
激光脉冲对碳电极活化的研究   总被引:1,自引:0,他引:1  
用1.06μm波长的激光脉冲对玻璃碳电极、碳纤维电极进行了照射处理,处理后的碳电极表面活性有很大改善,Fe3+/2+、抗坏血酸的电极反应速率显著提高。初步认为,这种结果是在瞬间强激光的作用下,清除了表面惰性层,改变了表面微结构,暴露出更多的活性质点所致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号