首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we present a novel 128/64 point fast Fourier transform (FFT)/ inverse FFT (IFFT) processor for the applications in a multiple-input multiple-output orthogonal frequency-division multiplexing based IEEE 802.11n wireless local area network baseband processor. The unfolding mixed-radix multipath delay feedback FFT architecture is proposed to efficiently deal with multiple data sequences. The proposed processor not only supports the operation of FFT/IFFT in 128 points and 64 points but can also provide different throughput rates for 1-4 simultaneous data sequences to meet IEEE 802.11n requirements. Furthermore, less hardware complexity is needed in our design compared with traditional four-parallel approach. The proposed FFT/IFFT processor is designed in a 0.13-mum single-poly and eight-metal CMOS process. The core area is 660times2142 mum2 , including an FFT/IFFT processor and a test module. At the operation clock rate of 40 MHz, our proposed processor can calculate 128-point FFT with four independent data sequences within 3.2 mus meeting IEEE 802.11n standard requirements  相似文献   

2.
In this paper, we present 64/128/256/512‐point inverse fast Fourier transform (IFFT)/FFT processor for single‐user and multi‐user multiple‐input multiple‐output orthogonal frequency‐division multiplexing based IEEE 802.11ac wireless local area network transceiver. The multi‐mode processor is developed by an eight‐parallel mixed‐radix architecture to efficiently produce full reconfigurability for all multi‐user combinations. The proposed design not only supports the operation of IFFT/FFT for 1–8 different data streams operated by different users in case of downlink transmission, but also, it provides different throughput rates to meet IEEE 802.11ac requirements at the minimum possible clock frequency. Moreover, less power is needed in our design compared with traditional software approach. The design is carefully optimized to operate by the minimum wordlengths that fulfill the performance and complexity specifications. The processor is designed and implemented on Xilinx Vertix‐5 field programmable gate array technology. Although the maximum clock frequency is 377.84 MHz, the processor is clocked by the operating sampling rate to further reduce the power consumption. At the operation clock rate of 160 MHz, our proposed processor can calculate 512‐point FFT with up to eight independent data sequences within 3.2~μs meeting IEEE 802.11ac standard requirements. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
讨论了复杂128点FFT处理器的并行和旋转结构。VLSI实现FFT适用于超高速数据处理。随着新的VLSI技术的发展,高速处理和低功耗设计成为现实。使用CORDIC旋转处理器可以优化面积和速度的设计,在不降低数据处理速度的基础上,这种FFT仅仅使用了5.3万等效逻辑门。  相似文献   

4.
A parallel-data VLSI architecture for computation of the fast Fourier transform (FFT) is described. The processor is based on a computationally efficient vector rotate algorithm. Use of a 2-dimensional pipeline configuration allows a radix-2 butterfly operation to be performed once every system clock cycle (250 ns) to generate real or imaginary transform components. The architecture is considered to be a computationally efficient VLSI approach for high-bandwidth computation of the FFT. The design and performance of an 8-bit FFT butterfly processor are described.  相似文献   

5.
In this paper, we present a novel fixed-point 16-bit word-width 64-point FFT/IFFT processor developed primarily for the application in an OFDM-based IEEE 802.11a wireless LAN baseband processor. The 64-point FFT is realized by decomposing it into a two-dimensional structure of 8-point FFTs. This approach reduces the number of required complex multiplications compared to the conventional radix-2 64-point FFT algorithm. The complex multiplication operations are realized using shift-and-add operations. Thus, the processor does not use a two-input digital multiplier. It also does not need any RAM or ROM for internal storage of coefficients. The proposed 64-point FFT/IFFT processor has been fabricated and tested successfully using our in-house 0.25-/spl mu/m BiCMOS technology. The core area of this chip is 6.8 mm/sup 2/. The average dynamic power consumption is 41 mW at 20 MHz operating frequency and 1.8 V supply voltage. The processor completes one parallel-to-parallel (i.e., when all input data are available in parallel and all output data are generated in parallel) 64-point FFT computation in 23 cycles. These features show that though it has been developed primarily for application in the IEEE 802.11a standard, it can be used for any application that requires fast operation as well as low power consumption.  相似文献   

6.
设计了一种应用于802.11a的64点FFT/IFFT处理器.采用单蝶形4路并行结构,提出了4路并行无冲突地址产生方法,有效地提高了吞吐率,完成64点FFT/IFFT运算只需63个时钟周期.提出的RAM双乒乓结构实现了对输入和输出均为连续数据流的缓存处理.不仅能实现64点FFT和IFFT,而且位宽可以根据系统任意配置.为了提高数据运算的精度,设计采用了块浮点算法,实现了精度与资源的折中.16位位宽时,在HJTC 0.18μmCMOS工艺下综合,内核面积为:0.626 7 mm2,芯片面积为:1.35 mm×1.27 mm,最高工作频率可达300 MHz,功耗为126.17 mW.  相似文献   

7.
This research work focuses on the design of a high-resolution fast Fourier transform (FFT)/inverse FFT (IFFT) processors for constraints analysis purpose. Amongst the major setbacks associated with such high-resolution FFT processors are the high-power consumption resulting from the structural complexity and computational inefficiency of floating-point calculations. As such, a parallel pipelined architecture was proposed to statically scale the resolution of the processor to suite adequate trade-off constraints. The quantisation was applied to provide an approximation to address the finite word-length constraints of digital signal processing. An optimum operating mode was proposed, based on the signal-to-quantisation-noise ratio (SQNR) as well as the statistical theory of quantisation, to minimise the trade-off issues associated with selecting the most application-efficient floating-point processing capability in contrast to their resolution quality.  相似文献   

8.
《Microelectronics Journal》2002,33(5-6):417-427
In this paper, the design of a very large scale integration (VLSI) architecture for low-power H.263/MPEG-4 video codec is addressed. Starting from a high-level system modelling, a profiling analysis indicates a hardware–software (HW–SW) partitioning assuming power consumption, flexibility and circuit complexity as main cost functions. The architecture is based on a reduced instruction set computer engine, enhanced by dedicated hardware processing, with a memory hierarchy organisation and direct memory access-based data transfers. To reduce the system power consumption two main strategies have been adopted. The first consists in the design of a low-power high-efficiency motion estimator specifically targeted to low bit-rate applications. Exploiting the correlation of video motion field it attains the same high coding efficiency of the full-search approach for a computational burden lower than about two orders of magnitude. Combining the decreased algorithm complexity with low-power VLSI design techniques the motion estimator power consumption is scaled down to few mW. The second consists in the implementation of a proper buffer hierarchy to reduce memory and bus power consumption in the HW–SW communication. The effectiveness of the proposed architecture has been validated through performance measurements on a prototyping platform.  相似文献   

9.
Details of a new low power fast Fourier transform (FFT) processor for use in digital television applications are presented. This has been fabricated using a 0.6-μm CMOS technology and can perform a 64 point complex forward or inverse FFT on real-time video at up to 18 Megasamples per second. It comprises 0.5 million transistors in a die area of 7.8×8 mm2 and dissipates 1 W. The chip design is based on a novel VLSI architecture which has been derived from a first principles factorization of the discrete Fourier transform (DFT) matrix and tailored to a direct silicon implementation  相似文献   

10.
In this paper, a novel multiple antenna, high-resolution eigenvalue-based spectrum sensing algorithm based on the FFT of the received signal is introduced. The proposed platform overcomes the SNR wall problem in the conventional energy detection (ED) algorithm, enabling the detection of the weak signals at ?10 dB SNR. Moreover, the utilization of FFT for the input signal channelization provides a simple, low-power design for a high-resolution spectrum sensing regime. A real-time, low-area, and low-power VLSI architecture is also developed for the algorithm, which is implemented in a 0.18 μm CMOS technology. The implemented design is the first eigenvalue-based detection (EBD) architecture proposed to-date capable of detecting weak signals at ?10 dB. Despite having more algorithmic complexity in comparison to the ED, the proposed EBD architecture shows no significant increase in the core area and the power consumption, due to the FFT utilization for the input signal channelization. The proposed design occupies a total area of 3.4 mm2 and dissipates 78 mW for a 40 MHz sensing bandwidth consisting of 32 sub-channels.  相似文献   

11.
A pipelined Fast Fourier Transform and its inverse (FFT/IFFT) processor, which utilizes hardware resources efficiently, is proposed for MIMO-OFDM WLAN 802.11n. Compared with a conventional MIMO-OFDM implementation, (in which as many FFT/IFFT processors as the number of transmit/receive antennas is used), the proposed architecture (using hardware sharing among multiple data sequences) reduces hardware complexity without sacrificing system throughput. Further, the proposed architecture can support 1–4 input data sequences with sequence lengths of 64 or 128, as needed. The FFT/IFFT processor is synthesized using TSMC 0.18 um CMOS technology and saves 25% area compared to a conventional implementation approach using radix-23 algorithm. The proposed FFT/IFFT processor can be configured to improve power efficiency according to the number of input data sequences and the sequence length. The processor consumes 38 mW at 75 MHz for one input sequence with 64-point length; it consumes 87 mW at 75 MHz for four input sequences with length 128-point and can be efficiently used for IEEE 802.11n WLAN standard.
Paul AmpaduEmail:
  相似文献   

12.
设计了一种应用于超宽带(UWB)无线通信系统中的FFT/IFFT处理器。该处理器采用基24算法进行FFT运算,利用8路并入并出的流水线结构实现该算法,提高了处理器的数据吞吐率,降低了芯片功耗。提出了一种新颖的数据处理方式,在保证信噪比的情况下节约了逻辑资源。在乘法器的设计环节,针对UWB系统的具体特点,在结构上对乘法器进行了改进和优化,提高了乘法器的性能。最后,设计的FFT/IFFT处理器采用TSMC 0.18μm CMOS标准工艺库综合,芯片的内核面积为0.762mm2(不含测试电路)。在1.8V,25℃条件下,最大工作时钟317.199MHz,在UWB典型的工作频率下,内核功耗为33.5304mW。  相似文献   

13.
针对WIMAX系统中变长子载波的特点,通过采用流水线乒乓结构,以基2、基4混合基实现了高速可配置的FFT/IFFT。将不同点数的FFT旋转因子统一存储,同时对RAM单元进行优化,节约了存储空间;此外对基4蝶形单元进行优化,减少了加法和乘法运算单元。仿真和综合结果表明,设计满足了WIMAX高速系统中不同带宽下FFT/IFFT的要求。  相似文献   

14.
流水线结构FFT/IFFT处理器的设计与实现   总被引:1,自引:0,他引:1  
针对实时高速信号处理的要求,设计并实现了一种高效的FFT处理器。在分析了FFT算法的复杂度和硬件实现结构的基础上,处理器采用了按频率抽取的基—4算法,分级流水线以及定点运算结构。可以根据要求设置成4P点的FFT或IFFT。处理器可以对多个输入序列进行连续的FFT运算,消除了数据的输入输出对延时的影响。平均每完成一次N点FFT运算仅需要Ⅳ个时钟周期。整个设计基于Verilog HDL语言进行模块化设计。并在Altera公司的Cyclone Ⅱ器件上实现。  相似文献   

15.
An optimal implementation of 128-Pt FFT/IFFT for low power IEEE 802.15.3a WPAN using pseudo-parallel datapath structure is presented, where the 128-Pt FFT is devolved into 8-Pt and 16-Pt FFTs and then once again by devolving the 16-Pt FFT into 4×4 and 2×8. We analyze 128-Pt FFT/IFFT architecture for various pseudo-parallel 8-Pt and 16-Pt FFTs and an optimum datapath architecture is explored. It is suggested that there exists an optimum degree of parallelism for the given algorithm. The analysis demonstrated that with a modest increase in area one can achieve significant reduction in power. The proposed architectures complete one parallel-to-parallel (i.e., when all input data are available in parallel and all output data are generated in parallel) 128-point FFT computation in less than 312.5 ns and thereby meet the standard specification. The relative merits and demerits of these architectures have been analyzed from the algorithm as well as implementation point of view. Detailed power analysis of each of the architectures with a different number of data paths at block level is described. We found that from power perspective the architecture with eight datapaths is optimum. The core power consumption with optimum case is 60.6 MW which is only less than half of the latest reported 128-point FFT design in 0.18u technology. Furthermore, a Single Event Upset (SEU) tolerant scheme for registers is also explored. The SEU tolerant scheme will not affect the performance, however, there is an increase power consumption of about 42 percent. Apart from the low power consumption, the advantages of the proposed architectures include reduced hardware complexity, regular data flow and simple counter based control.  相似文献   

16.
Low-power design for embedded processors   总被引:1,自引:0,他引:1  
Minimization of power consumption in portable and battery powered embedded systems has become an important aspect of processor and system design. Opportunities for power optimization and tradeoffs emphasizing low power are available across the entire design hierarchy. A review of low-power techniques applied at many levels of the design hierarchy is presented, and an example of low-power processor architecture is described along with some of the design decisions made in implementation of the architecture  相似文献   

17.
In this paper, the architecture and the implementation of a complex fast Fourier transform (CFFT) processor using 0.6 μm gallium arsenide (GaAs) technology are presented. This processor computes a 1024-point FFT of 16 bit complex data in less than 8 μs, working at a frequency beyond 700 MHz, with a power consumption of 12.5 W. The architecture of the processor is based on the COordinate Rotation DIgital Computer (CORDIC) algorithm, which avoids the use of conventional multiplication-and-accumulation (MAC) units, but evaluates the trigonometric functions using only add and shift operations, Improvements to the basic CORDIC architecture are introduced in order to reduce the area and power of the processor. This together with the use of pipelining and carry save adders produces a very regular and fast processor, The CORDIC units were fabricated and tested in order to anticipate the final performance of the processor. This work also demonstrates the maturity of GaAs technology for implementing ultrahigh-performance signal processors  相似文献   

18.
A 1-GS/s FFT/IFFT processor for UWB applications   总被引:1,自引:0,他引:1  
In this paper, we present a novel 128-point FFT/IFFT processor for ultrawideband (UWB) systems. The proposed pipelined FFT architecture, called mixed-radix multipath delay feedback (MRMDF), can provide a higher throughput rate by using the multidata-path scheme. Furthermore, the hardware costs of memory and complex multipliers in MRMDF are only 38.9% and 44.8% of those in the known FFT processor by means of the delay feedback and the data scheduling approaches. The high-radix FFT algorithm is also realized in our processor to reduce the number of complex multiplications. A test chip for the UWB system has been designed and fabricated using 0.18-/spl mu/m single-poly and six-metal CMOS process with a core area of 1.76/spl times/1.76 mm/sup 2/, including an FFT/IFFT processor and a test module. The throughput rate of this fabricated FFT processor is up to 1 Gsample/s while it consumes 175 mW. Power dissipation is 77.6 mW when its throughput rate meets UWB standard in which the FFT throughput rate is 409.6 Msample/s.  相似文献   

19.
The fast Fourier transform (FFT) is a very important algorithm in digital signal processing. The locally pipelined (LPPL) architecture is an efficient structure for FFT processor designing in a real-time embedded system. Two basic building blocks, to the LPPL FFT processor, the butterfly in pipeline, and address generating, are discussed in this brief. Based on the "deep" feedback to butterfly-2, a novel approach for pipelined architecture, the radix-2 single-path deep delay feedback architecture is proposed. For length-N discrete Fourier transform computation, the dominant hardware requirements are minimal for complex multipliers log/sub 4/N-1 and adders 2log/sub 4/N. As an integral need of the LPPL FFT processor design, address generating and coefficient store-load structures are also presented.  相似文献   

20.
Two 128-point 16-bit radix-2 FFT/IFFT processors based on synchronous-logic (sync) and asynchronous-logic (async) for low voltage (1.1-1.4 V) energy-critical low-speed hearing aids are described. The two processors herein are designed with the same function and similar architecture, and the emphasis is energy efficacy. The async approach, on average, features ~37% lower energy per FFT/IFFT computation than the sync approach but with ~10% larger IC area penalty and an inconsequential 1.4 times worse delay; the async design can be designed to be 0.24 times faster and with largely the same energy dissipation if the matched delay elements and the latch controllers therein are better optimized. In this low-speed application, the lower energy feature of the async design is not attributed to the absence of the clock infrastructure but instead due to the adoption of established and proposed async circuit designs, resulting in reduced redundant operations and reduced spurious/glitch switching, and to the use of latches. The prototype async FFT/IFFT processor (in a 0.35-mum CMOS process) can be operated at 1.0 V and dissipates 93 nJ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号