首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we investigate call admission control (CAC) schemes that can jointly provide connection-level quality-of-service (QoS) (in terms of the new call blocking probability and the handoff dropping probability) and packet-level QoS (in terms of the packet loss probability) for wireless multimedia networks. Stationary CAC schemes are proposed as the results of the solution to constrained optimization problems. A dynamic CAC scheme that can be adapted to varied and varying traffic conditions dynamically is also proposed. The proposed CAC schemes are computationally efficient and easy to implement, thus being suitable for real-time system deployment. Simulation results have demonstrated that the proposed dynamic CAC scheme achieves better performance when applied to realistic traffic conditions found in wireless multimedia networks.  相似文献   

2.
该文提出的基于GoS的呼叫准入控制(GoS-CAC)算法的判决门限综合了多种因素:系统负荷、各业务服务质量(QoS)要求、信道质量、干扰水平、系统服务等级(GoS)以及用户的切换等等。GoS-CAC算法与功率/ 数据速率调节机制巧妙结合,具有判决速度快、精度高、门限自适应和简单易行等特点。仿真结果表明,与传统CAC算法相比,GoS-CAC算法的切换用户业务阻塞性能优约10%,系统GoS优50%左右,而中断性能优57%以上。  相似文献   

3.
The increasing variety and complexity of traffic in today's mobile wireless networks means that there are more restrictions placed on a network in order to guarantee the individual requirements of the different traffic types and users. Call admission control (CAC) plays a vital role in achieving this. In this paper, we propose a CAC scheme for multiple service systems where the predicted call usage of each service is used to make the admission decision. Our scheme enables real‐time traffic to be transmitted using shared bandwidth without quality of service (QoS) requirements being exceeded. This ensures that the utilization of the available wireless bandwidth is maximized. Information about the channel usage of each service is used to estimate the capacity of the cell in terms of the number of users that can achieve a certain bit error rate (BER). Priorities assigned to each service are used to allocate the network capacity. An expression for the handoff dropping probability is derived, and the maximum acceptance rate for each service that results in the estimated dropping probability not exceeding its QoS requirements is calculated. Each call is then accepted with equal probability throughout the duration of a control period. Achieved QoS during the previous control period is used to update the new call acceptance rates thus ensuring the dropping probability remains below the specified threshold. Simulations conducted in a wideband CDMA environment with conversational, streaming, interactive and background sources show that the proposed CAC can successfully meet the hard restraint on the dropping probability and guarantee the required BER for multiple services. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
An efficient call admission control scheme for handling heterogeneous services in wireless ATM networks is proposed. Quality-of-service provisioning of jitter bounds for constant bit rate traffic and delay bounds for variable bit rate traffic is used in the CAC scheme to guarantee predefined QoS levels for all traffic classes. To reduce the forced handoff call dropping rate, the CAC scheme gives handoff calls a higher priority than new calls by reserving an appropriate amount of resources for potential handoff calls. Resource reservation in the CAC scheme makes use of user mobility information to ensure efficient resource utilization. Simulation results show that the proposed CAC scheme can achieve both low handoff call dropping rate and high resource utilization  相似文献   

5.
A novel radio resource management (RRM) scheme for the support of packet-switched transmission in cellular CDMA systems is proposed by jointly considering the physical, link, and network layer characteristics. The proposed resource management scheme is comprised of a combination of power distribution, rate allocation, service scheduling, and connection admission control. Power distribution allows individual connections to achieve their required signal-to-interference-plus-noise ratio, while rate allocation guarantees the required delay/jitter for real-time traffic and the minimum transmission rate requirement for non-real-time traffic. Efficient rate allocation is achieved by making use of the randomness and burstiness; of the packet generation process. At the link layer, a packet scheduling scheme is developed based on information derived from power distribution and rate allocation to achieve quality of service (QoS) guarantee. Packet scheduling efficiently utilizes the system resources in every time slot and improves the packet throughput for non-real-time traffic. At the network layer, a connection admission control (CAC) scheme based on the lower layer resource allocation information is proposed. The CAC scheme makes use of user mobility information to reduce handoff connection dropping probability (HCDP). Theoretical analysis of the grade of service performance, in terms of new connection blocking probability, HCDP, and resource utilization, is given. Numerical results show that the proposed RRM scheme can achieve both effective QoS guarantee and efficient resource utilization.  相似文献   

6.
Multimedia traffic is expected to be included in the next generation of wireless networks. As in wireline networks, the wireless network must also be capable of providing guaranteed quality-of-service (QoS) over the lifetime of mobile connections. In this paper, a bandwidth reservation scheme incorporating a user mobility prediction is proposed to manage the QoS of the networks. The mobility prediction scheme is developed based on the aggregate history of mobile users. Based on the mobility prediction, bandwidth is reserved to guarantee the uninterrupted handoff process. Simulation results demonstrate that the proposed scheme can guarantee the required QoS requirements in terms of handoff call dropping probability and new call blocking probability while maintaining efficient bandwidth utilization.  相似文献   

7.
For various advantages including better utilization of radio spectrum (through frequency reuse), lower mobile transmit power requirements, and smaller and cheaper base station equipment, future wireless mobile multimedia networks are likely to adopt micro/picocellular architectures. A consequence of using small cell sizes is the increased rate of call handoffs as mobiles move between cells during the holding times of calls. In a network supporting multimedia services, the increased rate of call handoffs not only increases the signaling load on the network, but makes it very difficult for the network to guarantee the quality of service (QoS) promised to a call at setup or admission time. This paper describes an adaptive QoS handoff priority scheme which reduces the probability of call handoff failures in a mobile multimedia network with a micro/picocellular architecture. The scheme exploits the ability of most multimedia traffic types to adapt and trade off QoS with changes in the amount of bandwidth used. In this way, calls can trade QoS received for fewer handoff failures. The call level and packet level performance of the handoff scheme are studied analytically for a homogeneous network supporting a mix of wide-band and narrow-band calls. Comparisons are made to the performance of the nonpriority handoff scheme and the well-known guard-channel handoff scheme  相似文献   

8.
Effective support of real‐time multimedia applications in wireless access networks, viz. cellular networks and wireless LANs, requires a dynamic bandwidth adaptation framework where the bandwidth of an ongoing call is continuously monitored and adjusted. Since bandwidth is a scarce resource in wireless networking, it needs to be carefully allocated amidst competing connections with different Quality of Service (QoS) requirements. In this paper, we propose a new framework called QoS‐adaptive multimedia wireless access (QoS‐AMWA) for supporting heterogeneous traffic with different QoS requirements in wireless cellular networks. The QoS‐AMWA framework combines the following components: (i) a threshold‐based bandwidth allocation policy that gives priority to handoff calls over new calls and prioritizes between different classes of handoff calls by assigning a threshold to each class, (ii) an efficient threshold‐type connection admission control algorithm, and (iii) a bandwidth adaptation algorithm that dynamically adjusts the bandwidth of an ongoing multimedia call to minimize the number of calls receiving lower bandwidth than the requested. The framework can be modeled as a multi‐dimensional Markov chain, and therefore, a product‐form solution is provided. The QoS metrics—new call blocking probability (NCBP), handoff call dropping probability (HCDB), and degradation probability (DP)—are derived. The analytical results are supported by simulation and show that this work improves the service quality by minimizing the handoff call dropping probability and maintaining the bandwidth utilization efficiently. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
In Media Independent Handover (MIH), Call Admission Control (CAC) and Vertical Handoff (VH) are two important mechanisms in a Mobile Wireless Networks (MWNs) that consists of various types of wireless networks (e.g., WiMAX and WiFi) and cellular communications (e.g., 3G, 3.5G and 4G). First, an adaptive CAC is needed in base stations for achieving high network reward while guaranteeing QoS requirements. Second, an efficient vertical handoff enables mobile stations accomplishing seamless, fast, QoS-aware mobility in MWNs. In CAC, several studies have proposed the mechanisms: the static resource reservation-based, bandwidth borrow-based and Markov chain model-based approaches. They suffer from moderate performance in Grade of Service (GoS), Fractional Reward Loss (FRL) and transmission quality. In VH, it should consider both the received signal strength (RSS) and the service-class mapping between the serving and target networks. Most studies adopted the integration of a RSS-based method with hysteresis to minimize unnecessary handoffs, but high handoff dropping and low network utilization limit the contributions. This work thus proposes a MIH-based competitive on-line (COL) CAC for vertical handoff in a loosely-coupled MWN. First, in a base station (BS) the COL CAC models the resource occupancy of each wireless network in a MWN as a Markov chain model, and then forms a cost-reward CAC for maximizing network reward. Second, in MS the VH scheme adopts a predictive RSS to predict the moving trend of each mobile station to select the optimal target network. Numerical results indicate that the proposed approach outperforms other approaches in GoS, FRL and the number of vertical handoffs while yielding competitive utilization.  相似文献   

10.
Performance of CAC strategies for multimedia traffic in wireless networks   总被引:3,自引:0,他引:3  
Call admission control (CAC) strategies for multimedia traffic in wireless networks is studied. A wireless network cell serving two types of customers; narrowband customers, which require one channel and wideband customers, which require b/sub w//spl ges/1 channels is considered. Two CAC strategies; reserve channels strategy (RCS) and threshold strategy (TS) are applied to the wireless cell and their performances are compared. The results show that in most operating conditions, the RCS has a lower blocking probability and probability of handoff call dropping than the TS. Only in the case when the wideband traffic is higher than the narrowband traffic that the weighted probability of handoff call dropping becomes higher for the RCS. Mean server utilization is lower for the threshold CAC than for the reserve channels CAC strategy at most operating conditions.  相似文献   

11.
Li  Bo  Lin  Chuang  Chanson  Samuel T. 《Wireless Networks》1998,4(4):279-290
In this paper, we propose and analyze the performance of a new handoff scheme called hybrid cutoff priority scheme for wireless networks carrying multimedia traffic. The unique characteristics of this scheme include support for N classes of traffic, each may have different QoS requirements in terms of number of channels needed, holding time of the connection and cutoff priority. The proposed scheme can handle finite buffering for both new calls and handoffs. Futhermore, we take into consideration the departure of new calls due to caller impatience and the dropping of queued handoff calls due to unavailability of channels during the handoff period. The performance indices adopted in the evaluation using the Stochastic Petri Net (SPN) model include new call and handoff blocking probabilities, call forced termination probability, and channel utilization for each type of traffic. Impact on the performance measures by various system parameters such as queue length, traffic input and QoS of different traffic has also been studied. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
In this paper, a novel call admission control (CAC) scheme using fuzzy logic is proposed for the reverse link transmission in wideband code division multiple access (CDMA) cellular communications. The fuzzy CAC scheme first estimates the effective bandwidths of the call request from a mobile station (MS) and its mobility information, then makes a decision to accept or reject the connection request based on the estimation and system resource availability. Numerical results are given to demonstrate the effectiveness of the proposed fuzzy CAC scheme in terms of new call blocking probability/handoff call dropping probability, outage probability, and resource utilization.  相似文献   

13.
The provision of multiclass services is gaining wide acceptance and will be more ubiquitous in future wireless and mobile systems. The crucial issue is to provide the guaranteed mobile quality of service (QoS) for arriving multiclass calls. In multimedia cellular networks, we should not only minimize the dropping rate of handoff calls, but also control the blocking rate of new calls at an acceptable level. This paper proposes a novel multiclass call-admission-control mechanism that is based on a dynamic reservation pool for handoff requests. In this paper, we propose the concept of servicing multiclass connections based on priority determination through the combined analysis of mobile movement information and the desired QoS requirements of multimedia traffic. A practical framework is provided to determine the occurrence time of handoff-request reservations. In our simulation experiments, three kinds of timers are introduced for controlling the progress of discrete events. Our simulation results show that the individual QoS criteria of multiclass traffic such as the handoff call-dropping probability can be achieved within a targeted objective and the new-call-blocking probability is constrained to be below a given level. The proposed scheme is applicable to channel allocation of multiclass calls over high-speed wireless multimedia networks.  相似文献   

14.
This paper presents a new adaptive bandwidth allocation scheme to prevent handoff failure in wireless cellular networks, known as the measurement-based preassignment (MPr) technique. This technique is particularly useful in micro/pico cellular networks which offers quality-of-service (QoS) guarantee against call dropping. The proposed MPr scheme distinguishes itself from the well-known guarded channel (GC) based schemes in that it allows the handoff calls to utilize a prereserved channel pool before competing for the shared channels with new call arrivals. The key advantage of the proposed MPr scheme is that it enables easy derivation of the number of channels that needs to be reserved for handoff based on a predetermined handoff dropping probability, without the need for solving the often complex Markov chain required in GC schemes, thus, making the proposed MPr scheme simple and efficient for implementation. This is essential in handling multiple traffic types with potentially different QoS requirements. In addition, the MPr scheme is adaptive in that it can dynamically adjust the number of reserved channels for the handoff according to the periodical measurement of the traffic status within a local cell, thus completely eliminating the signaling overhead for status information exchange among cells mandated in most existing channel allocation schemes. Numerical results and comparisons are given to illustrate the tradeoff  相似文献   

15.
In this article, we propose new methods to reduce the handoff blocking probability in the 3rd Generation Partnership Project Long Term Evolution wireless networks. This reduction is based on an adaptive call admission control scheme that provides QoS guarantees and gives the priority of handoff call over new call in admission. The performance results of the proposed schemes are compared with other competing methods using simulation analysis. Simulation results show the major impact on the performance of the 3rd Generation Partnership Project Long Term Evolution network, which is reflected in increased resource utilization ratio to (99%) and in the ability in satisfying the requirements of QoS in terms of call blocking probability (less than 0.0628 for Voice over IP service) and dropping probability rate (less than 0.0558).Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
We develop the notion of quality of service (QoS) for multimedia traffic in terms of maximum call dropping probabilities independent of system load and a predefined call blocking probability profile for the different traffic classes for wireless networks of arbitrary shape and dimension. We describe two distributed predictive admission control algorithms, independent multiclass one-step prediction (IMOSP-CS and IMOSP-RES), which provide each traffic class with a given call dropping probability and a desired call blocking probability profile. Both algorithms may be seen as extensions of the multimedia one-step prediction (MMOSPRED) algorithm previously reported, which uses prediction of the overload probability in the home and neighbor cells in deciding whether to admit new users into a multiclass cellular system. The two algorithms differ in their approach to handoff call admission. The first algorithm completely shares the bandwidth among the entering handoff users while the second implements a partition-based reservation scheme. In this paper, we additionally impose a call blocking criterion that ensures a system-imposed call priority independent of the traffic in the system and which adapts to changes in the offered load. In comparing these algorithms to each other, we focus on system throughput and class independence. Both algorithms provide appropriate throughput under both homogeneous and heterogeneous traffic loading conditions while maintaining steady call dropping probabilities for each traffic class  相似文献   

17.
Since code-division multiple-access (CDMA) capacity is interference limited, call admission control (CAC) must guarantee both a grade of service (GoS), i.e., the blocking rate, and a quality of service (QoS), i.e., the loss probability of communication quality. This paper describes the development of a new capacity design method based on these two concepts. Theoretical expressions for GoS and QoS as functions of traffic intensity and CAC thresholds are first derived from the traffic theory viewpoint, and then a design method using these expressions is presented. At that time, two strategies for CAC are assumed. One is based on the number of users, and the other is based on the interference level. Computer simulation results are presented that strongly support the proposed design method. Furthermore, numerical examples and a performance comparison of the two strategies considering various propagation parameters, nonuniform traffic distributions, and various transmission rates are shown  相似文献   

18.
The CAC (call admission control), which can guarantee call services to meet their QoS (Quality of Service) requirements, plays a significant role in providing QoS in wireless mobile networks. In this paper, an adaptive multiguard channel scheme‐based CAC strategy is proposed to prioritize traffic types and handoff calls. The major aim of the study is to develop the analytical model of the priority traffic and handoff calls based adaptive multiguard channel scheme and examining the performance through setting the value of the adaptive ratio parameters. Our proposed scheme tries to mediate the advantages and drawbacks of the static and dynamic CAC schemes. The proposed scheme is quite different from previous studies because multithreshold values have been considered for multiclass traffic by adaption parameters, and a closed form analytical model is developed The numerical results show that this scheme can be used to keep the targeted QoS requirement by suitably setting the adaptive ratio parameters. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
The next-generation wireless networks are evolving toward a versatile IP-based network that can provide various real-time multimedia services to mobile users. Two major challenges in establishing such a wireless mobile Internet are support of fast handoff and provision of quality of service (QoS) over IP-based wireless access networks. In this article, a DiffServ resource allocation architecture is proposed for the evolving wireless mobile Internet. The registration-domain-based scheme supports fast handoff by significantly reducing mobility management signaling. The registration domain is integrated with the DiffServ mechanism and provisions QoS guarantee for each service class by domain-based admission control. Furthermore, an adaptive assured service is presented for the stream class of traffic, where resource allocation is adjusted according to the network condition in order to minimize handoff call dropping and new call blocking probabilities  相似文献   

20.
In wireless multimedia communication systems, call admission control (CAC) is critical for simultaneously achieving a high resource utilization efficiency and maintaining quality-of-service (QoS) to mobile users. User mobility, heterogeneous nature of multimedia traffic, and limited radio spectrum pose significant challenges to CAC. QoS provisioning to both new calls and handoff calls comes with a cost of low resource utilization. This paper proposes a CAC policy for a wireless communication system supporting integrated voice and dataservices. In particular, soft QoS (or relaxed target QoS) is incorporated in the CAC policy to make compromises among different objectives.Numerical results are presented to demonstrate that (a) in dealing with the dilemma between QoS satisfaction and high resource utilization, how the resource utilization efficiency can be increased by introducing soft QoS; and (b) in accommodating different types of traffic, how the QoS of low priority traffic can be improved by specifying soft QoS to high priority traffic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号