首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
在无线传感器网络中,大量感知数据汇集到sink节点的采集方法会导致sink节点附近的节点能量耗尽,造成能量空洞。针对该问题,利用移动的sink节点进行数据收集是一种解决方法,其中移动sink的路径规划成为一个重要的问题。提出了一个移动sink路径规划算法,将无线传感器中随机分布的节点划分为不同的子区域,寻找sink节点移动的最佳转向点,最终得到最优的移动路径,以实现无线传感器网络生命周期最大化。仿真实验表明,与现有方案相比,该算法能显著延长网络的生命周期。  相似文献   

2.
With the advances of more and more mobile sink deployments (e.g., robots and unmanned aerial vehicles), mobile sinks have been demonstrated to play an important role in the prolongation of network lifetime. In this paper, we consider the network lifetime maximization problem for time‐sensitive data gathering, which requires sensing data to be sent to the sink as soon as possible, subject to several constraints on the mobile sink. Because the mobile sink is powered by petrol or electricity, its maximum travel distance per tour is bounded. The mobile sink's maximum moving distance from its current location to the next must also be bounded to minimize data loss. As building a new routing tree rooted at each new location will incur an overhead on energy consumption, the mobile sink must sojourn at each chosen location at least for a certain amount of time. The problem, thus, is to find an optimal sojourn tour for the mobile sink such that the network lifetime is maximized, which is subject to a set of constraints on the mobile sink: its maximum travel distance, the maximum distance of each movement, and the minimum sojourn time at each sojourn location. In this paper, we first formulate this novel multiple‐constrained optimization problem as the distance‐constrained mobile sink problem for time‐sensitive data gathering. We then devise a novel heuristic for it. We finally conduct extensive experiments by simulation to evaluate the performance of the proposed algorithm. The experimental results demonstrate that the performance of the proposed algorithm is very promising, and the solution obtained is fractional of the optimal one. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
We propose an efficient proactive data dissemination approach that allows a mobile sink to effectively gather a representative view of a monitored region covered by n sensor nodes by visiting any m nodes, where m << n. Moreover, the proposed strategy allows the mobile sink to follow any trajectory through the deployment region, thus decoupling the data dissemination management from the mobile sink?s trajectory. Index Terms?Random walks; proactive data  相似文献   

4.
This paper investigates strategies for prolonging the system lifetime for wireless video sensor networks, by adopting a mobile sink and solar-powered video sensors. Issues of tracking moving objects in wireless video sensor networks are studied, and the effectiveness of adopting a mobile sink is evaluated. This paper applies a power-rate-distortion analysis framework, which provides a theoretical fundamental to quantify various properties of wireless video sensor networks. The performance of wireless video sensor networks is evaluated with a mobile sink versus a static sink, under different cluster sizes and number of sensors. Comparisons of network lifetime, tracking error, video distortion, are also covered in this paper. In addition, this paper also evaluates the performance of solar-powered video sensors under an unequal layered clustering topology.  相似文献   

5.
Energy efficient data collection in a delay‐bound application is a challenging issue for mobile sink–based wireless sensor networks. Many researchers have proposed the concept of rendezvous points (RPs) to design the path for the mobile sink. Rendezvous points are the locations in the network where the mobile sink halts and collects data from the nearby sensor nodes. However, the selection of RPs for the design of path has a significant impact on timely data collection from the network. In this paper, we propose an efficient algorithm for selection of the RPs for efficient design of mobile sink trajectory in delay‐bound applications of wireless sensor networks. The algorithm is based on a virtual path and minimum spanning tree and shown to maximize network lifetime. We perform extensive simulations on the proposed algorithm and compare results with the existing algorithms to demonstrate the efficiency of the proposed algorithm of various performance metrics.  相似文献   

6.
In wireless sensor networks (WSNs), a mobile sink can help eliminate the hotspot effect in the vicinity of the sink, which can balance the traffic load in the network and thus improve the network performance. Location‐based routing is an effective routing paradigm for supporting sink mobility in WSNs with mobile sinks (mWSNs). To support efficient location‐based routing, scalable location service must be provided to advertise the location information of mobile sinks in an mWSN. In this paper, we propose a new hierarchical location service for supporting location‐based routing in mWSNs. The proposed location service divides an mWSN into a grid structure and exploits the characteristics of static sensors and mobile sinks in selecting location servers. It can build, maintain, and update the grid‐spaced network structure via a simple hashing function. To reduce the location update cost, a hierarchy structure is built by choosing a subset of location servers in the network to store the location information of mobile sinks. The simulation results show that the proposed location service can significantly reduce the communication overhead caused by sink mobility while maintaining high routing performance, and scales well in terms of network size and sink number. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
当sink节点位置固定不变时,分布在sink 节点周围的传感节点很容易成为枢纽节点,因转发较多的数据而过早失效。为解决上述问题,提出移动无线传感网的生存时间优化算法(LOAMWSN)。LOAMWSN算法考虑sink节点的移动,采用减聚类算法确定sink节点移动的锚点,采用最近邻插值法寻找能遍历所有锚点的最短路径近似解,采用分布式非同步Bellman-Ford算法构建sink节点k跳通信范围内的最短路径树。最终,传感节点沿着最短路径树将数据发送给sink节点。仿真结果表明:在节点均匀分布和非均匀分布的无线传感网中,LOAMWSN算法都可以延长网络生存时间、平衡节点能耗,将平均节点能耗保持在较低水平。在一定的条件下,比Ratio_w、TPGF算法更优。  相似文献   

8.
Introduction of mobile sinks into a wireless sensor network can largely improve the network performance. However, sink mobility can cause unexpected changes of network topology, which may bring excessive protocol overhead for route maintenance and may offset the benefit from using mobile sinks. In this paper, we propose an efficient data‐driven routing protocol (DDRP) to address this problem. The design objective is to effectively reduce the protocol overhead for data gathering in wireless sensor networks with mobile sinks. DDRP exploits the broadcast feature of wireless medium for route learning. Specifically, each data packet carries an additional option recording the known distance from the sender of the packet to target mobile sink. The overhearing of transmission of such a data packet will gratuitously provide each listener a route to a mobile sink. Continuous such route‐learning among nodes will provide fresh route information to more and more nodes in the network. When no route to mobile sink is known, random walk routing simply is adopted for data packet forwarding. Simulation results show that DDRP can achieve much lower protocol overhead and longer network lifetime as compared with existing work while preserving high packet delivery ratio. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
杨晨曦  孙子文 《信号处理》2022,38(8):1675-1683
针对工业无线传感网络中物理层干扰攻击问题,研究一种移动环境下的博弈功率控制方案。为提高移动sink节点的抗干扰能力,利用Bayesion-Stackelberg博弈模拟移动sink节点和干扰节点的对抗交互行为,通过求出参与博弈的节点最优策略,即sink节点和干扰节点的最佳传输功率,达到合法节点抗干扰的最佳效果,提高通信系统物理层的安全性。Matlab仿真结果表明,相比移动sink节点的其他博弈功率控制算法,本文方案能更有效地提高合法节点抗干扰能力且能耗更低。   相似文献   

10.
柯熙政  陈锦妮 《激光技术》2013,37(2):251-255
为了减少无线传感器网络节点的能量消耗,采用紫外光作为无线传感器网络的信息载体,研究了紫外光传感器节点的能量模型。理论分析了单跳节能和多跳节能,得出了计算最优跳数的数学表达式,并对单跳通信、多跳通信和最优跳通信的平均能量消耗进行了计算机仿真,仿真结果与理论分析一致;对于多跳通信带来的能量消耗不均匀的问题,利用移动sink节点来解决,通过仿真对比了sink节点不同移动速率对网络平均能量消耗、丢包率和端到端时延的影响。结果表明,借助移动sink节点可以降低网络的平均能量消耗,但要根据场景选择合适的移动速率。  相似文献   

11.
This paper studies on delivery-guaranteed and effective data dissemination for mobile sink groups in wireless sensor networks. A mobile sink group denotes a set of tightly coupled mobile sinks for team collaborations such as a team of firefighters and a group of solders. The mobile sinks have a group movement feature. They thus randomly move in personal spaces as well as collectively move together as a single entity. To support such group mobility, previous studies provide circle-based protocols determining successive circular areas of a group continuously moving, and then propagate data in the areas by flooding. However, since a group is still moving during decision of each circle, they may cause asynchrony between circles and actual group positions. Eventually, it could harm reachability and energy-efficiency. We therefore propose a novel data dissemination protocol using motion properties of a mobile sink group: slowly varying and streamlike movement. By the slowly varying constraint, the protocol predictively and effectively delivers data to a group through a band of sensor nodes located in front of the streamlike trajectory of the group.  相似文献   

12.
Network lifetime maximization is challenging particularly for large-scale wireless sensor networks. The sensor nodes near the sink node tend to suffer high energy consumption due to heavy traffic relay operations, becoming vulnerable to energy depletion. The rationale of the sink mobility approach is that as the sink node moves around, such risk of energy depletion at some nodes can be alleviated. In this paper, we first obtain the optimal mobile sink sojourning pattern by solving a linear programming model and then we mathematically analyze why the optimal solution exhibits such sojourning pattern. We use the insights from this analysis to design a simple practical heuristic algorithm for sink mobility, which utilizes only local information. Our heuristic is very different from the existing algorithms which often use the traffic volume as the main decision factor, in that we consider the variance of residual energy of neighboring sensor nodes. The simulation results show that our scheme achieves near-optimal network lifetime even with the relatively low moving speed of the mobile sink.  相似文献   

13.
In the recent years, the use of mobile sink has drawn enormous attention for data collection in wireless sensor networks (WSNs). Mobile sink is well known for solving hotspot or sinkhole problem. However, the design of an efficient path for mobile sink has tremendous impact on network lifetime and coverage in data collection process of WSNs. This is particularly an important issue for many critical applications of WSNs where data collection requires to be carried out in delay bound manner. In this paper, we propose a novel scheme for delay efficient trajectory design of a mobile sink in a cluster based WSN so that it can be used for critical applications without compromising the complete coverage of the target area. Given a set of gateways (cluster heads), our scheme determines a set of rendezvous points for designing path of the mobile sink for critical applications. The scheme is based on the Voronoi diagram. We also propose an efficient method for recovery of the orphan sensor nodes generated due to the failure of one or more cluster heads during data collection. We perform extensive simulations over the proposed algorithm and compare its results with existing algorithms to demonstrate the efficiency of the proposed algorithm in terms of network lifetime, path length, average waiting time, fault tolerance and adaptability etc. For the fault tolerance, we simulate the schemes using Weibull distribution and analyze their performances.  相似文献   

14.
Wireless Personal Communications - Using a single fixed sink in wireless sensor networks (WSNs) creates the hotspot problem. Recently, the mobile sink technique is considered as a good solution to...  相似文献   

15.
This paper deals with a unified system of fully distributed meshed sensor network and mobile robot cooperation that serves as a sink node. The meshed sensor network in this paper is composed of static wireless nodes, and is capable of fully distributed peer-to-peer (P2P) ad hoc communication with ZigBee-based protocol. A novel communication timing control employing coupled-oscillator dynamics, named phase-diffusion time-division method (PDTD), has been proposed so far, aiming at realization of an ad hoc collision-free wireless communication network. In this paper, we extend the basic PDTD so that it can exhibit flexible topological reconfiguration according to the moving sink node (robot). Unlike conventional sensor network, no static sink node is supposed inside the network; however, a mobile robot will function as a sink node and access the mesh network from an arbitrary position. A large-scale experiment was conducted, and its results show that satisfactory collaboration between the mesh sensor network and the mobile robot is achieved, and the proposed system outperformed the carrier-sense-multiple-access-based sensor system.  相似文献   

16.
Energy conservation is a critical issue in resource constraint wireless sensor networks. Employing mobile sink to deliver the sensed data becomes pervasive approach to conserve sensors’ limited energy. However, mobile sink makes data delivery a hard nut to crack since nodes need to know its latest location. Providing sink’s latest location by traditional flooding, erode the energy conservation goal. In this paper, we propose a Grid-Cycle Routing Protocol (GCRP) with the aim of minimizing the overhead of updating the mobile sink’s latest location. In GCRP, sensor field is partitioned into grid of cells and for each cell a grid cell head (GCH) is elected. Cycles of four GCHs is formed. Cycle(s) involving border GCHs is called exterior cycle and said to belong to a region. Another cycle involving non-boundary GCHs is called interior cycle, connecting GCHs of different regions. When sink stays at one location, it updates the nearest GCH, which in turn updates the other GCHs through exterior and interior cycle. Moreover, we propose a set of sharing rules that govern GCHs when and with who share sink’s latest location information. The performance of GCRP is evaluated at different number of nodes and compared with existing work using NS-2.31.  相似文献   

17.
The participants in the Wireless Sensor Network (WSN) are highly resource constraint in nature. The clustering approach in the WSN supports a large-scale monitoring with ease to the user. The node near the sink depletes the energy, forming energy holes in the network. The mobility of the sink creates a major challenge in reliable and energy efficient data communication towards the sink. Hence, a new energy efficient routing protocol is needed to serve the use of networks with a mobile sink. The primary objective of the proposed work is to enhance the lifetime of the network and to increase the packet delivered to mobile sink in the network. The residual energy of the node, distance, and the data overhead are taken into account for selection of cluster head in this proposed Energy Efficient Clustering Scheme (EECS). The waiting time of the mobile sink is estimated. Based on the mobility model, the role of the sensor node is realized as finite state machine and the state transition is realized through Markov model. The proposed EECS algorithm is also been compared with Modified-Low Energy Adaptive Clustering Hierarchy (MOD-LEACH) and Gateway-based Energy-Aware multi-hop Routing protocol algorithms (M-GEAR). The proposed EECS algorithm outperforms the MOD-LEACH algorithm by 1.78 times in terms of lifetime and 1.103 times in terms of throughput. The EECS algorithm promotes unequal clustering by avoiding the energy hole and the HOT SPOT issues.  相似文献   

18.
方效林  高宏  李建中 《电子学报》2013,41(5):1007-1011
 本文针对基站可移动传感器网络实现了一再编程协议MovPro.该协议可以将新的二进制程序通过多跳的形式下发到网络内的节点上并使之运行.该协议的大致过程描述为,当基站在网络内移动时,基站将数据发送给它移动轨迹上的节点.节点收到部分二进制代码后通过窗口交换的形式将二进制代码传播到整个网络.MovPro是第一个在基站可移动传感器网络的真实系统.本文通过多种方式减少通信开销,并通过二级存储的方式减少外部flash的写次数.实验表明MovPro适用于基站可移动传感器网络.  相似文献   

19.
A wireless sensor network typically consists of users, a sink, and a number of sensor nodes. The users may be remotely connected to a wireless sensor network and via legacy networks such as Internet or Satellite the remote users obtain data collected by the sink that is statically located at a border of the wireless sensor network. However, in practical sensor network applications, there might be two types of users: the traditional remote users and mobile users such as firefighters and soldiers. The mobile users may move around sensor fields and they communicate with the static sink only via the wireless sensor networks in order to obtain data like location information of victims in disaster areas. For supporting the mobile users, existing studies consider temporary structures. However, the temporary structures are constructed per each mobile user or each source nodes so that it causes large energy consumption of sensor nodes. Moreover, since some of them establish the source-based structure, sinks in them cannot gather collective information like mean temperature and object detection. In this paper, to effectively support both the remote users and the mobile users, we propose a novel service protocol relying on the typical wireless sensor network. In the protocol, multiple static sinks connect with legacy networks and divide a sensor field into the number of the multiple sinks. Through sharing queries and data via the legacy networks, the multiple static sinks provide high throughput through distributed data gathering and low latency through short-hops data delivery. Multiple static sinks deliver the aggregated data to the remote users via the legacy networks. In case of the mobile users, when a mobile user moves around, it receives the aggregated data from the nearest static sink. Simulation results show that the proposed protocol is more efficient in terms of energy consumption, data delivery ratio, and delay than the existing protocols.  相似文献   

20.

The wireless sensor network (WSN) is always known for its limited-energy issues and finding a good solution for energy minimization in WSNs is still a concern for researchers. Implementing mobility to the sink node is used widely for energy conservation or minimization in WSNs which reduces the distance between sink and communicating nodes. In this paper, with the intention to conserve energy from the sensor nodes, we designed a clustering based routing protocol implementing a mobile sink called ‘two dimensional motion of sink node (TDMS)’. In TDMS, each normal sensor node collects data and send it to their respective leader node called cluster head (CH). The sink moves in the two dimensional direction to collect final data from all CH nodes, particularly it moves in the direction to that CH which has the minimum remaining energy. The proposed protocol is validated through rigorous simulation using MATLAB and comparisons have been made with WSN’s existing static sink and mobile sink routing protocols over two different geographical square dimensions of the network. Here, we found that TDMS model gives the optimal result on energy dissipation per round and increased network lifetime.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号