首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
The problem of solving the optimal (minimum-noise) error feedback coefficients for recursive digital filters is addressed in the general high-order case. It is shown that when minimum noise variance at the filter output is required, the optimization problem leads to set of familiar Wiener-Hopf or Yule-Walker equations, demonstrating that the optimal error feedback can be interpreted as a special case of Wiener filtering. As an alternative to the optimal solution, the formulas for suboptimal error feedback with symmetric or antisymmetric coefficients are derived. In addition, the design of error feedback using power-of-two coefficients is discussed. The efficiency of high order error feedback is examined by test implementations of the set of standard filters. It is concluded that error feedback is a very powerful and versatile method for cutting down the quantization noise in any classical infinite impulse response (IIR) filter implemented as a cascade of second-order direct form sections. The high-order schemes are attractive for use with high-order direct form sections  相似文献   

2.
Wiener design of adaptation algorithms with time-invariant gains   总被引:1,自引:0,他引:1  
A design method is presented that extends least mean squared (LMS) adaptation of time-varying parameters by including general linear time-invariant filters that operate on the instantaneous gradient vector. The aim is to track time-varying parameters of linear regression models in situations where the regressors are stationary or have slowly time-varying properties. The adaptation law is optimized with respect to the steady-state parameter error covariance matrix for time-variations modeled as vector-ARIMA processes. The design method systematically uses prior information about time-varying parameters to provide filtering, prediction, or fixed lag smoothing estimates for arbitrary lags. The method is based on a transformation of the adaptation problem into a Wiener filter design problem. The filter works in open loop for slow parameter variations, whereas a time-varying closed loop has to be considered for fast variations. In the latter case, the filter design is performed iteratively. The general form of the solution at each iteration is obtained by a bilateral Diophantine polynomial matrix equation and a spectral factorization. For white gradient noise, the Diophantine equation has a closed-form solution. Further structural constraints result in very simple design equations. Under certain model assumptions, the Wiener designed adaptation laws reduce to LMS adaptation. Compared with Kalman estimators, the channel tracking performance becomes nearly the same in mobile radio applications, whereas the complexity is, in general, much lower  相似文献   

3.
This paper presents a method for the frequency-domain design of digital finite impulse response filters with arbitrary magnitude and group delay responses. The method can deal with both the equiripple design problem and the peak constrained least squares (PCLS) design problem. Consequently, the method can also be applied to the equiripple passbands and PCLS stopbands design problem as a special case of the PCLS design. Both the equiripple and the PCLS design problems are converted into weighted least squares optimization problems. They are then solved iteratively with appropriately updated error weighting functions. A novel scheme for updating the error weighting function is developed to incorporate the design requirements. Design examples are included in order to compare the performance of the filters designed using the proposed scheme and several other existing methods.  相似文献   

4.
The effect of imperfect channel estimation (CE) on the performance of pilot-symbol-assisted modulation (PSAM) and MRC Rake reception over time- or frequency-selective fading channels with either a uniform power delay profile (UPDP) or a nonuniform power delay profile (NPDP) is investigated. For time-selective channels, a Wiener filter or linear minimum mean square error (LMMSE) filter for CE is considered, and a closed-form asymptotic expression for the mean square error (MSE) when the number of pilots used for CE approaches infinity is derived. In high signal-to-noise ratio (SNR), the MSE becomes independent of the channel Doppler spectrum. A characteristic function method is used to derive new closed-form expressions for the bit error rate (BER) of Rake receivers in UPDP and NPDP channels. The results are extended to two-dimensional (2-D) Rake receivers. The pilot-symbol spacing and pilot-to-data power ratio are optimized by minimizing the BER. For UPDP channels, elegant results are obtained in the asymptotic case. Furthermore, robust spacing design criteria are derived for the maximum Doppler frequency.  相似文献   

5.
A comparative investigation on various channel estimation algorithms for OFDM system in the mobile communication environment is presented and analyzed in terms of computational complexity, mean square error, and bit error rate in this paper. As a result, Wiener filter estimation shows the best error performance. Concerning the computational complexity as well as the performance, however, the piecewise linear estimator is considered as a proper choice when the reference signal spacing is relatively narrow. And the cubic-spline estimator is a good alternative to the Wiener filter estimation if the reference signal spacing is wider than the coherent bandwidth of transmission channel.  相似文献   

6.
LFM信号的一种最优滤波算法   总被引:4,自引:0,他引:4       下载免费PDF全文
齐林  陶然  周思永  王越 《电子学报》2004,32(9):1464-1467
本文提出了一种基于分数阶傅立叶变换的LFM信号的最优滤波算法.首先由线性最小均方误差估计的正交条件出发,得到了连续分数阶傅立叶域上的等效Wiener滤波算子的求解方法;在此基础上,进一步给出了滤波算子的离散化算法.分析及数值仿真的结果表明,这一算法不仅在性能上接近普通的Wiener滤波器,而且计算简单,便于实现.  相似文献   

7.
Relying on nonredundant diagonal precoding and independent and identically distributed (i.i.d.) source assumption, this paper proposes a blind channel estimation scheme for single-carrier frequency-domain equalization-based space-time block coded systems. The proposed method exploits the precoding-induced linear signal structure in the conjugate cross correlation between the two temporal block received signals as well as the circulant channel matrix property and can yield exact solutions whenever the channel noise is circularly Gaussian and the receive data statistic is perfectly obtained. The channel estimation formulation builds on rearranging the set of linear equations relating the entries of conjugate cross-correlation matrix and products of channel impulse responses into one with a distinctive block-circulant with circulant-block (BCCB) structure. This allows a simple identifiability condition depending on precoder parameters alone and also provides a natural yet effective optimal precoder design framework for improving solution accuracy when imperfect data estimation occurs. We consider two models of data mismatch, from both deterministic and statistical points of view, and propose the associated design criteria. The optimization problems are formulated to take advantage of the BCCB system matrix property and are solved analytically. The proposed optimal precoder aims to optimize solution robustness against deterministic error perturbation and also minimize the mean-square error when the data mismatch is modeled as a white noise. Pairwise error probability analysis is conducted for investigating the equalization performance. Numerical examples are used to illustrate the performance of the proposed method  相似文献   

8.
In an attempt to gain insight into the design of linear detectors for additive white noise channels (discrete-time case), we describe several procedures, both optimal and suboptimal. Using the Wiener representation for nonlinear systems, we derive an ad hoc suboptimal design procedure. Exact designs are found when the noise amplitude's probability distribution is stable and when the noise is Laplacian. Considering all the linear detectors thus derived, no general form for the optimal linear detector's unit-sample response becomes apparent. Performance analyses and simulations indicate substantial performance losses occur when linear detectors are used instead of optimal (likelihood ratio) ones  相似文献   

9.
针对白噪声中线性调频信号的滤波问题 ,提出了一种基于Chirp Fourier变换的Wiener滤波算法 ,根据线性变换等效Wiener滤波的原理 ,利用最小二乘法导出了Chirp Fourier域上的Wiener滤波算子。理论分析及仿真结果表明 ,该算法不仅能够给出信号波形的最小均方误差估计 ,还可利用FFT实现 ,且实现较为简便。  相似文献   

10.
A covariance shaping framework for linear multiuser detection   总被引:1,自引:0,他引:1  
A new class of linear multiuser receivers, referred to as the covariance shaping multiuser (CSMU) receiver, is proposed, for suppression of interference in multiuser wireless communication systems. This class of receivers is based on the recently proposed covariance shaping least-squares estimator, and is designed to minimize the total variance of the weighted error between the receiver output and the observed signal, subject to the constraint that the covariance of the noise component in the receiver output is proportional to a given covariance matrix, so that we control the dynamic range and spectral shape of the output noise. Some of the well-known linear multiuser receivers are shown to be special cases of the CSMU receiver. This allows us to interpret these receivers as the receivers that minimize the total error variance in the observations, among all linear receivers with the same output noise covariance, and to analyze their performance in a unified way. We derive exact and approximate expressions for the probability of bit error, as well as the asymptotic signal-to-interference+noise ratio in the large system limit. We also characterize the spectral efficiency versus energy-per-information bit of the CSMU receiver in the wideband regime. Finally, we consider a special case of the CSMU receiver, equivalent to a mismatched minimum mean-squared error (MMSE) receiver, in which the channel signal-to-noise ratio (SNR) is not known precisely. Using our general performance analysis results, we characterize the performance of the mismatched MMSE receiver. We then treat the case in which the SNR is known to lie in a given uncertainty range, and develop a robust mismatched MMSE receiver whose performance is very close to that of the MMSE receiver over the entire uncertainty range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号