首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper provides a general outage analysis framework for cooperative cognitive networks with proactive relay selection over non-identical Rayleigh fading channels and under both maximum transmit power and interference power constraints. We firstly propose an exact closed-form outage probability expression, which is then exploited for determining the diversity order and coding gain for proactive relay selection scenarios as well as deriving system performance limits at either large maximum transmit power or large maximum interference power. The derived performance metrics bring several insights into system performance behavior without the need of time-consuming Monte-Carlo simulations. Various results confirm the validity of the proposed derivations and show that cooperative cognitive networks with proactive relay selection incur performance saturation and their performance depends considerably on the number of involved relays. In addition, cooperative cognitive networks are significantly better than dual-hop counterparts without any cost of system resources.  相似文献   

2.
王松青  许晓明  高瞻  杨炜伟  蔡跃明 《信号处理》2014,30(11):1267-1274
协同中继传输不仅能改善认知用户的传输可靠性,而且也能增强认知用户物理层安全性。针对Underlay模式下多中继协同频谱共享认知无线网络,本文设计了基于选择译码转发和分布式迫零波束成形(SDF-DZFB)的物理层安全传输方案,其中,假设存在单个被动窃听节点窃听中继节点的发送信号,在认知用户发送端同时考虑峰值干扰温度约束和最大发射功率约束,中继和认知用户目的端都受到主用户干扰。在此情况下,分析了认知用户发送端分别到目的端(称为主链路)和到窃听节点(称为窃听链路)的等效信干噪比的统计特性,进而推导出系统安全中断概率性能的闭式表达式。为了揭示所提物理层安全传输方案的安全分集度性能,本文进一步分析了高信噪比条件下安全中断概率的渐近表达式。计算机仿真验证了本文的理论分析结果。   相似文献   

3.
This paper proposes an exact and limit analysis framework for numerically assessing the outage performance of the maximum ratio combining in cooperative cognitive networks with proactive relay selection under channel information error on all channels simultaneously, maximum transmit power constraint, interference power constraint, and independent and non-identical fading channels. The proposed framework can be used for corresponding analysis in dual-hop cognitive networks with proactive relay selection to study how much performance gain can be achieved from utilizing the direct channel between the source and the destination in relaying communications. Various results demonstrate considerable system performance degradation and error floor phenomenon due to channel information error. However, performance degradation and error floor degree can be drastically mitigated by increasing the number of relays. Moreover, the direct channel significantly contributes to performance improvement at virtually no cost of system resources such as power and bandwidth.  相似文献   

4.
We derive a closed-form bit error rate (BER) formula for underlay cognitive N-hop networks operated over Nakagami-m fading channels where N is the arbitrary integer. This formula is corroborated by Monte Carlo simulations and useful for evaluating the network performance under different parameters such as modulation level, path-loss, maximum transmit power, tolerable interference power level, fading model, and the number of hops. Numerical results illustrate that underlay cognitive multi-hop networks suffer a high error floor and the BER performance not only depends on the number of hops but also the network topology. For the linear network model, the higher the number of hops, the better the network performance.  相似文献   

5.
Underlay mechanism allows concurrent communications of primary users and secondary users in cognitive radio networks (CRNs), causing mutual interference between them. However, current literature neglects primary interference or considers it as Gaussian noise. In addition, artificial noise, which is intentionally generated to interfere eavesdroppers, can improve security performance of CRNs. This paper analyzes security performance of CRNs, accounting for artificial noise and considering primary interference as non-Gaussian noise, under maximum transmit power constraint, interference power constraint, and Rayleigh fading channels. The security performance is evaluated through proposed exact expressions of secrecy outage probability, non-zero achievable secrecy rate probability, and intercept probability, which are verified by Monte-Carlo simulations. Various results demonstrate that CRNs suffer security performance saturation in the range of large maximum transmit power or large maximum interference power, and primary interference significantly deteriorates security performance while artificial noise is useful in enhancing this performance.  相似文献   

6.
针对采用无线携能传输(SWIPT)的多中继协作底层认知NOMA网络,提出一种基于NOMA和串行干扰消除协议的两阶段中继选择策略(TSRS),次级网络源节点和所选中继采用相同的功率分配生成多用户叠加信号,中继只利用采集能量提供解码转发服务。推导了用户中断概率的闭合表达式,进行了蒙特卡洛仿真验证,分析了功率分配因子、能量分裂参数、干扰温度限和中继数量等系统参数对中断性能的影响。仿真结果表明,所提方案可显著提升协作系统中断性能。   相似文献   

7.
In this paper, we investigate the physical layer security of a hybrid cognitive relay network using an energy harvesting relay in presence of an eavesdropper. In the hybrid scheme, a secondary user (SU) as well as a cognitive relay works either in underlay or in overlay mode. In underlay, the transmit power of the SU as well as the relay is limited by the maximum acceptable interference at primary user (PU) receiver as required by an outage constraint of PU, a quality of service for PU. The secondary network consists of a decode and forward relay that harvests energy from radio frequency signal of secondary transmitter as well as PU transmitter to assist the SU in forwarding the information signal to the destination. A time switching relaying protocol is used at the relay. We evaluate the secrecy outage probability of secondary relay network assuming that channel state information of the interfering links from both the SU and relay transmitter to PU receiver is imperfect. Our results reveal the impact of imperfect channel state information, energy harvesting time, tolerable interference threshold, and PU outage constraint on the secrecy outage probability of SU.  相似文献   

8.
针对采用无线携能通信的多中继底层协作认知非正交多址接入网络,提出一种两阶段中继选择策略。认知中继执行功率划分的无线携能通信协议为次级用户提供解码转发服务,其能量开销源于所采集到的能量。考虑了实际的非正交多址接入网络中,中继节点与次级用户均无法完全消除多址干扰,即无法实现理想连续干扰消除。在干扰阈值约束下,推导了非理想连续干扰消除下两次级用户端中断概率的精确表达式,并通过蒙特卡洛仿真验证其正确性。此外,定量分析了各系统相关参数(最大发射功率、干扰阈值、功率分配系数等)的选取对次级用户中断性能的具体影响。结果表明,在相同的系统参数设置下,所提方案次级用户中断性能远优于现有部分中继选择方案。   相似文献   

9.
栾宇  李洪祚  王亚非 《中国通信》2012,9(12):108-116
Cognitive radio allows Secondary Users (SUs) to dynamically use the spectrum resource li-censed to Primary Users (PUs ), and significantly improves the efficiency of spectrum utilization and is viewed as a promising technology. In cognitive radio networks, the problem of power control is an important issue. In this paper, we mainly focus on the problem of power control for fading channels in cognitive radio networks. The spectrum sharing un-derlay scenario is considered, where SUs are al-lowed to coexist with PUs on the condition that the outage probability of PUs is below the maximum outage probability threshold limitation due to the interference caused by SUs. Moreover, besides the outage probability threshold which is defined to protect the performance of PUs, we also consider the maximum transmit power constraints for each SU. With such a setup, we emphasize the problem of power control to minimize the outage probability of each SU in fading channels. Then, based on the statistical information of the fading channel, the closed expression for outage probability is given in fading channels. The Dual-Iteration Power Control (DIPC) algorithm is also proposed to minimize the outage probability based on Perron-Frobenius theo-ry and gradient descent method under the constraint condition. Finally, simulation results are illustrated to demonstrate the performance of the proposed scheme.  相似文献   

10.
This paper considers cooperative non‐orthogonal multiple access (NOMA) scheme in an underlay cognitive radio (CR) network. A single‐cell downlink cooperative NOMA system has been considered for the secondary network, consisting of a base station (BS) and two secondary users, ie, a far user and a near user. The BS employs NOMA signaling to send messages for the two secondary users where the near user is enabled to act as a half‐duplex decode‐and‐forward (DF) relay for the far user. We derive exact expressions for the outage probability experienced by both the users and the outage probability of the secondary system assuming the links to experience independent, nonidentically distributed Rayleigh fading. Further, we analyze the ergodic rates of both the users and the ergodic sum rate of the secondary network. The maximum transmit power constraint of the secondary nodes and the tolerable interference power constraint at the primary receiver are considered for the analysis. Further, the interference caused by the primary transmitter (PT) on the secondary network is also considered for the analysis. The performance of the proposed CR NOMA network has been observed to be significantly better than a CR network that uses conventional orthogonal multiple access (OMA) scheme. The analytical results are validated by extensive simulation studies.  相似文献   

11.
This paper evaluates the outage performance of cognitive relay networks with mutual interference between secondary users and primary users under the underlay approach, while adhering to the interference constraint on the primary user. A network path selection criterion, suitable for cognitive relay networks, is provided, from which we derive the outage probability expression of cognitive relay networks. It is shown that the outage probability considering the interference to secondary user from primary user is higher than that without considering the interference to secondary user from primary user. In addition, the outage probability is affected by key network parameters. We analyze network path selection method based on outage probability and prove that the interference to secondary user from primary user has a significant effect on the network path selection and can not be ignored in practical wireless communication environments. Simulation investigation is also provided and used to verify the theoretical analysis.  相似文献   

12.
In this paper, we examine an adaptive decode-and-forward cooperative protocol under interference constraint. In the proposed protocol, relying on the obtained instantaneous signal-to-noise ratios (SNRs), a direct link or relay link is used to transmit data from the secondary source to the secondary destination. In addition, once the relay link is used, the secondary source and relay must adapt their transmit power to maximize the instantaneous SNR of this link. To evaluate the performance of the proposed protocol, we derive closed-form lower-bound and upper-bound expressions for the outage probability over Rayleigh fading channel. Finally, various Monte-Carlo simulations are presented to verify our analysis and compare the performance of the proposed protocol with that of the direct transmission protocol in underlay cognitive network.  相似文献   

13.
Recently, cooperative relaying techniques have been integrated into spectrum‐sharing systems in an effort to yield higher spectral efficiency. Many investigations on such systems have assumed that the channel state information between the secondary transmitter and primary receiver used to calculate the maximum allowable transmit secondary user transmit power to limit the interference is known to be perfect. However, because of feedback delay from the primary receiver or the time‐varying properties of the channel, the channel information may be outdated, which is an important scenario to cognitive radio systems. In this paper, we investigate the impact of outdated channel state information for relay selection on the performance of partial relay selection with amplify and forward in underlay spectrum‐sharing systems. We begin by deriving a closed‐form expression for the outage probability of the secondary network in a Rayleigh fading channel along with peak received interference power constraint and maximum allowable secondary user transmit power. We also provide a closed‐form expression for the average bit‐error rate of the underlying system. Moreover, we present asymptotic expressions for both the outage probability and average bit‐error rate in the high signal‐to‐noise ratio regime that reveal practical insights on the achievable diversity gain. Finally, we confirm our results through comparisons with computer simulations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
This paper investigates the performance of energy harvesting (EH) relay-based interweave/underlay cognitive radio network. The relay employs amplify and forward (AF) technique along with time-switching relaying protocol (TSR) for EH. Based on sensing accuracy, we derive an expression for optimisation of charging duration TSR parameter and sensing duration for maximising throughput of interweave cognitive radio (CR). Based on sensing efficiency, throughput and outage probability for underlay CR is analysed considering the interference temperature constraints and optimal power distribution parameter at secondary user (SU) terminals. Variations in the sum-rate and detection probability are considered in terms of cumulative distribution functions (CDF) of the terminal Signal to Noise Ratios (SNRs). We prove that erogodic sum-rate is maximised in underlay CR case, when interference power distribution parameter is half across the SU terminals. The optimised values of switching-time ratios have been derived analytically for both interweave and underlay CR. The results thus obtained are compared by taking symmetrical and asymmetric channels between SU terminals. Analytical results are validated through Monte-Carlo simulations to confirm the accuracy of the derived expressions.  相似文献   

15.
This paper introduces a new spectrum sharing constraint which facilitates outage analysis for the cognitive relay networks with multiple primary receivers (PR)s and under outdated channel state information (CSI). The pivotal idea in spectrum sharing paradigm is controlling the interference generated due to the coexistence of primary and secondary users. In a realistic scenario, interference management is hampered by several parameters. In this context, this paper targets the influence of the CSI accuracy and the number of PRs. In a cognitive network with multiple PRs, the best approach to shielding the receivers from intolerable interference is to limit the maximum inflicted interference. Although being effective, this strategy has two drawbacks. First: it measurably affects mathematical tractability of the outage analysis. Second: it requires substantial resources to find the strongest interference channel which may be unaffordable in certain applications, especially when there are many PRs. In this paper, we propose the total interference (TI) constraint as the spectrum sharing criterion and investigate the outage behavior of the secondary network. A simple back-off power control method is adopted so as to mitigate the harmful effect of the outdated CSI. Considering decode-and-forward relays and partial relay selection strategy, we derive exact expressions for the end-to-end outage probability. Monte-Carlo simulations are made and results corroborate correctness of the mathematical derivations. The findings suggest that: first, outage assessment under the TI constraint is more tractable than under the maximum interference (MI) constraint as it leads to simple closed-form expressions. Second, the secondary network under the TI constraint is more resilient against the outdated CSI because the interference probability arising from the outdated CSI is smaller under the TI constraint than MI.  相似文献   

16.
One of the most challenging problems in dynamic resource allocation for cognitive radio networks is to adjust transmission power of secondary users (SUs) while quality of service needs of both SUs and primary users (PUs) are guaranteed. Most power control algorithms only consider interference temperature constraint in single user scenario while ignoring the interference from PUs to SUs and minimum signal to interference plus noise ratio (SINR) requirement of SUs. In this paper, a distributed power control algorithm without user cooperation is proposed for multiuser underlay CNRs. Specifically, we focus on maximizing total throughput of SUs subject to both maximum allowable transmission power constraint and SINR constraint, as well as interference temperature constraint. To reduce the burden of information exchange and computational complexity, an average interference constraint is proposed. Parameter range and convergence analysis are given for feasible solutions. The resource allocation is transformed into a convex optimization problem, which is solved by using Lagrange dual method. In computer simulations, the effectiveness of our proposed scheme is shown by comparing with distributed constrained power control algorithm and Nash bargaining power control game algorithm. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper we have studied the subcarrier and optimal power allocation strategy for OFDM-based cognitive radio (CR) networks. Firstly, in order to protect the primary user communication from the interference of the cognitive user transmissions in fading wireless channels, we design an opportunistic power control scheme to maximize the cognitive user capacity without degrading primary user’s QoS. The mathematical optimization problem is formulated as maximizing the capacity of the secondary users under the interference constraint at the primary receiver and the Lagrange method is applied to obtain the optimal solution. Secondly, in order to limit the outage probability within primary user’s tolerable range we analyze the outage probability of the primary user with respect to the interference power of the secondary user for imperfect CSI. Finally, in order to get the better tradeoff between fairness and system capacity in cognitive radio networks, we proposed an optimal algorithm of jointing subcarrier and power allocation scheme among multiple secondary users in OFDM-based cognitive radio networks. Simulation results demonstrate that our scheme can improve the capacity performance and efficiently guarantee the fairness of secondary users.  相似文献   

18.
Most resource allocation algorithms are based on interference power constraint in cognitive radio networks.Instead of using conventional primary user interference constraint,we give a new criterion called allowable signal to interference plus noise ratio(SINR) loss constraint in cognitive transmission to protect primary users.Considering power allocation problem for cognitive users over flat fading channels,in order to maximize throughput of cognitive users subject to the allowable SINR loss constraint and maximum transmit power for each cognitive user,we propose a new power allocation algorithm.The comparison of computer simulation between our proposed algorithm and the algorithm based on interference power constraint is provided to show that it gets more throughput and provides stability to cognitive radio networks.  相似文献   

19.
In this paper, we investigate outage performance of dual-hop cognitive AF relay networks with multiple primary users (PUs) and heterogeneous non-identical parameters, including non-identical Rayleigh fading channels, non-identical interference power constraints of PUs, and non-identical noise powers in signals. To overcome the analysis complexity resulted from the consideration of heterogeneous non-identical parameters completely, we conduct our analysis in two steps. In the first step, we focus on networks with non-identical Rayleigh fading channels but with identical interference power constraints and identical noise powers. As analysis results, both the exact closed-form expression and asymptotic closed-form expression of the cumulative distribution function of equivalent end-to-end signal-to-noise ratio of the network are obtained. Then in the second step, we propose a method for transforming networks with heterogeneous non-identical parameters into new networks with identical interference power constraints and identical noise powers meanwhile guaranteeing that outage performance of the two networks before and after the transformation are identical. Hence, outage performance of networks with heterogeneous non-identical parameters can be obtained by applying the analysis results in the fist step to the corresponding transformed networks. Numerical simulations validate the correctness of our analysis, and the simulations also indicate that taking multiple PUs and the diversity of the parameters into consideration is of key importance in obtaining a more accurate estimation of outage performance of such networks.  相似文献   

20.
Coded cooperation is a cooperative relaying technique which is bandwidth efficient and can provide better connectivity when used with cognitive radio. Earlier cognitive radio is implemented with cooperative schemes like decode and forward, amplify and forward, compress and forward, etc., which gives moderate spectrum efficiency and diversity with reduced fading problem of wireless communication. But these techniques are not bandwidth efficient so need huge bandwidth for transmission. In this paper, we have developed a mathematical model of new coded-cooperation based multi-relay system for cognitive radio and its outage probability is analytically derived for underlay mode. The performance analysis of proposed system is carried out in terms of interference temperature constraint, channel gain, number of relays through outage probability for single and multilink relays at the primary node for Rayleigh channel. The proposed system shows that the cognitive radio with coded cooperation outperforms the already existing techniques in terms of diversity, bandwidth, spectrum utilization efficiency and improve the communication quality. In addition, the theoretical analysis of the outage probability is validated by asymptotic analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号