首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
设计并实现了一种基于人眼安全波段的1550 nm全光纤化结构单频脉冲光纤激光器。激光器采用外腔稳频技术的单频半导体激光器作为种子源,其线宽1.8 kHz,功率20 mW。通过预放大器和声光调制器获得单频脉冲激光,并运用两级光纤放大器实现了线宽1.9 kHz、平均功率521 mW、脉冲宽度200 ns、重复频率10 kHz的单频脉冲光纤激光输出。输出脉冲峰值功率达260 W。输出端采用了双包层单模光纤,保证了输出激光的光束质量。整个激光器通过对种子光级联放大,结合放大器的增益控制,成功抑制了受激布里渊散射(Stimulated Brillouin Scattering,SBS)效应,消除了放大过程中噪声对线宽的影响,获得了线宽稳定的单频脉冲激光。  相似文献   

2.
李尧  温强  张昆  李政  张浩彬  余洋 《激光与红外》2021,51(12):1605-1609
报道了一种峰值功率58 kW的窄线宽纳秒脉冲光纤激光器,由窄线宽种子源加4级光纤放大的主振荡功率放大(MOPA)结构组成。窄线宽种子源输出的连续种子光经电光强度调制器调制为纳秒脉冲信号光,经4级光纤放大,输出峰值功率达58 kW的窄线宽脉冲激光,中心波长106431nm,平均功率569W,重频100kHz,脉宽98ns,斜效率717,光束质量M2=134,偏振消光比156dB。激光功率的进一步提升受限于次脉冲及自相位调制。该高峰值功率窄线宽纳秒脉冲光纤激光器可在激光雷达中得到应用。  相似文献   

3.
介绍了基于主振荡功率放大结构的人眼安全全光纤激光器.首先对比了电光调制及直接调制产生的种子激光在百kHz重复频率、纳秒级脉冲宽度的激光放大器中优缺点,综合系统需求选择直接调制方式;之后对窄脉冲单模放大中出现的脉冲分裂现象进行了研究,选用10 m纤芯的双包层铒镱共掺光纤,仅通过两级放大即获得了1 550 nm,重复频率为200 kHz,脉冲宽度为4.07 ns,峰值功率为1.02 kW的单模激光输出.具有结构紧凑、稳定可靠的特点,可用于三维视频激光雷达.  相似文献   

4.
基于LD脉冲调制的全光纤MOPA结构激光器   总被引:4,自引:1,他引:3  
报道了一台实用化的基于主振荡一功率放大(MOPA)方式工作的全光纤高重复频率脉冲激光器.以基于高速MOSFET驱动电源的调制激光二极管(LD)作为种子激光器,采用两级串联的单模双包层光纤作为预放,利用双包层光纤为主放.该器件可以得到重复频率高达600 kHz的窄脉冲输出.在重复频率125 kHz时,得到脉宽10ns,平均功率2.4 W的激光输出.研制的激光器具有较好的稳健性,将应用到空基的三维成像激光雷达中.  相似文献   

5.
为了抑制窄线宽脉冲光纤放大器中受激布里渊散射效应, 使用多谱线技术对单频种子源的线宽进行了拓展, 进行了基于三谱线的主振荡功率放大高峰值功率脉冲全光纤激光器实验验证。结果表明, 经过两级预放、一级功放, 获得激光输出的最大平均功率为303W, 脉宽为2.8ns, 重复频率为3.1MHz, 对应的峰值功率为35kW, 在最高功率输出情况下, 激光器的光束质量小于1.3;三谱线结构对受激布里渊散射有着明显的抑制作用。该研究为高峰值功率的脉冲光纤激光器放大技术提供了参考。  相似文献   

6.
张昆  周寿桓  李尧  张利明  余洋  张浩彬  朱辰  张大勇  赵鸿 《红外与激光工程》2020,49(4):0405003-0405003-6
报道了一种基于主振荡功率放大(MOPA)结构工作的全光纤窄线宽线偏振纳秒脉冲光纤激光器。脉冲种子源是由一个分布反馈直腔型(DFB)单频光纤激光器被光电调制器进行强度调制后产生的。为了抑制受激布里渊散射(SBS)效应,脉宽被调节为3 ns,并且种子源线宽被相位调制器展宽为2.9 GHz。经两级保偏掺Yb3+光纤放大器放大后,获得了平均功率142 W,重复频率1 MHz,脉冲宽度2.88 ns,峰值功率49.3 kW的脉冲激光输出。在最大输出功率时,激光光束质量因子M2约为1.15,偏振消光比(PER)大于15.4 dB。  相似文献   

7.
1030nm高重复频率纳秒脉冲全光纤放大器   总被引:1,自引:0,他引:1  
采用脉冲调制的单模带尾纤输出的半导体激光器作为种子源,以掺镱光纤为增益介质,采用主振荡功率放大(MOPA)结构,实现了1030nm全光纤脉冲激光放大。脉冲重复频率在50~100kHz范围内可调,在重复频率50kHz时,实现了脉冲宽度为6.53ns,峰值功率为16.08kW的脉冲输出,相应的斜率效率为69%,输出激光的中心波长在1029.49nm。实验还研究了不同重复频率下输出激光脉冲的时域特性。该激光器的输出波长在激光雷达探测器的光谱响应范围内,可作为激光雷达发射光源。  相似文献   

8.
为了实现功率稳定的风冷高重频脉冲光纤激光器,采用主振荡功率放大结构,对声光调Q的全光纤激光器进行了研究.振荡级采用声光调Q方案,以光纤光栅对为激光器腔镜,915nm激光二极管连续抽运,得到了中心波长1064nm、重复频率10kHz到130kHz可调的激光脉冲输出.采用两级大模场双包层光纤放大,实现了平均功率101W、脉冲宽度328.1ns、3dB光谱宽度0.6nm的激光输出.第二放大级光光转换效率69%,激光器总光光转换效率达62.7%.分析了声光调Q产生的宽种子光脉冲经放大后发生波形畸变的原因.结果表明,采用915nm抽运波长提高了激光器输出激光功率稳定性,在风冷的情况下输出功率长期稳定性优于2%.  相似文献   

9.
提出并演示了一种基于声光调制器(AOM)主动调Q的环形腔双包层光纤激光器获得窄线宽、窄脉宽和高重复频率激光脉冲的方法。通过在腔内采用以双包层增益光纤作为输入尾纤的泵浦剥离器来缩短腔长,可以降低增益光纤正向放大自发辐射(ASE)的反射,抑制其ASE的增益自饱和效应,使腔内有效增益增大,窄线宽调Q脉冲可在环形腔中快速建立,从而不仅可使调Q脉冲脉宽变窄,还允许其重复频率大幅提升。在7 W泵浦功率下,所提出的调Q光纤激光器获得了线宽和脉宽分别窄至0.16 nm和10.4 ns、重复频率高达150 kHz的调Q激光脉冲。  相似文献   

10.
实现了一种单端光纤耦合的高重复频率、窄脉冲、窄线宽及高效率的主动声光调Q全光纤脉冲光纤激光器。该光纤激光器基于光纤光栅与平面镜组合而成的线性法布里-珀罗(F-P)腔结构,采用激光二极管与(2+1)×1抽运耦合器形成后向抽运,并利用单端光纤耦合声光调制器(AOM)实现了全光纤化结构的脉冲掺镱双包层光纤激光器。调Q声光开关工作在一级方向,反向输出调Q脉冲,重复频率20~100kHz可调。在重复频率50kHz、抽运功率5.7W下系统获得了输出激光功率2.64W、单脉冲能量528μJ、脉宽56ns、峰值功率943W的稳定的高效率、窄线宽的窄脉冲,中心波长在1080nm左右,线宽为0.06nm,光-光转换效率高达46%。  相似文献   

11.
以单模1064 nm激光二极管(LD)光纤级联放大构成的全光纤化模块为种子光源,以国产大模场面积(LMA)双包层掺镱光纤为放大器,构成了高重复频率纳秒脉冲主振荡功率放大(MOPA)系统.实现了平均功率为59 W的脉冲放大激光输出,中心波长1064 nm,脉冲宽度22.7 ns(重复频率50 kHz时),重复频率50~150 kHz连续可调.实验研究了激光脉冲的时域和光谱特性,分析了光纤功率放大对激光脉冲波形的影响.  相似文献   

12.
颜凡江  杨策  陈檬  桑思晗  李梦龙  蒙裴贝 《红外与激光工程》2019,48(2):206002-0206002(5)
高重复频率、高峰值功率、窄线宽的激光在激光雷达领域具有重要的应用价值。在对高重频窄线宽激光进行放大时,为了同时实现高放大倍率与高光束质量激光输出,在高重频、窄线宽被动调Q激光器作为种子源的前提下,设计了利用888 nm半导体激光端面泵浦Nd:YVO4块状晶体实现高增益的一级放大,808 nm半导体激光侧面泵浦Nd:YVO4板条晶体实现低热透镜效应的二级放大的方案。在重复频率10 kHz时,获得了峰值功率5 MW,线宽154 pm,脉冲宽度0.6 ns,平均功率31.5 W,光束质量M2为1.98的激光输出。从而验证了将高放大倍率与高光束质量分别控制的放大器设计思路。  相似文献   

13.
全光纤结构主振荡功率放大型掺镱脉冲光纤激光器   总被引:3,自引:1,他引:2  
报道了一台全光纤结构主振荡功率放大(MOPA)型掺镱脉冲光纤激光器.种子源是工作波长为1064 nm的声光调Q光纤激光器,可以获得重复频率在20~50 kHz间可调、平均输出功率约2 W的随机偏振脉冲种子激光.以大直径保偏(PM)光纤作为增益介质,在6个单管功率10 W,波长为915 nm的半导体激光器抽运下,种子激光经过一级放大最终获得平均输出功率23.5 W.脉冲宽度约为30 ns,偏振抑制比超过10 dB,光束质量因子M2为1.36的线偏振单模脉冲激光输出.讨论了大直径保偏光纤与种子激光输出光纤的模场不匹配性对输出激光的光束质量和光谱特性的影响.  相似文献   

14.
高功率窄线宽光纤放大器及放大线宽特性   总被引:2,自引:0,他引:2  
研制了高功率窄线宽光纤放大器.该放大器采用双级放大结构,其中第一级预放为掺Er3+光纤放大器,第二级功率放大采用10 m长的Er3+/Yb3+共掺双包层光纤作为增益介质,抽运源采用两支波长为980 nm的大功率激光二极管.当抽运功率为10.7 W时,得到放大激光输出功率为1.94 W,光一光转换效率为17%,斜率效率20%.采用延迟自外差方法对种子激光器及各级放大器输出的激光线宽进行了测量,测量结果表明窄线宽激光谱线经过掺Er3+光纤与双包层光纤放大后均有不同程度的明显展宽.分析认为激光线宽展宽的主要原因是由于种子激光器中弛豫振荡或自脉冲的强度波动引起的自相位调制.  相似文献   

15.
人眼安全的1550 nm全光纤单频脉冲激光器具有广泛且诱人的应用前景。本文所研制的激光器采用全光纤主振荡功率放大(MOPA)结构和腔外声光调制的方法,一级预放大级采用1.5 m单模保偏掺铒光纤,输出功率21.45 mW;二级预放大级采用1.5 m双包层保偏铒镱共掺光纤,输出功率253.6 mW;功率放大级采用1 m双包层保偏大芯径铒镱共掺光纤,泵浦功率15.9 W时,最终实现了输出功率2.6 W、脉宽260 ns、重复频率10 kHz的单频脉冲激光输出。通过对各级增益光纤和无源光纤的长度优化,成功抑制了放大自发辐射(ASE)和受激布里渊散射(SBS),消除了放大过程中噪声的影响,得到了峰值功率1 KW的稳定单频脉冲特性。  相似文献   

16.
张大勇  张昆  朱辰  李尧  王雄飞  张利明 《激光与红外》2016,46(10):1234-1237
报道了一种基于主振荡功率放大结构的全光纤脉冲光纤激光器。种子光源是一个直接脉冲调制的1064 nm的外腔光纤布拉格光栅半导体激光器。峰值功率为1000 mW的种子LD经两级掺Yb3+双包层光纤放大后,在100 kHz重复频率下,获得了平均功率63.2 W、脉冲宽度14.3 ns、光谱宽度(FWHM) 4.552 nm、光束质量M2=1.09的脉冲激光输出。在此实验基础上研制了光纤激光器样机。  相似文献   

17.
MOPA结构的单频纳秒脉冲全光纤激光器   总被引:3,自引:1,他引:2  
报道了一台主振荡功率放大(MOPA)结构的单频脉冲光纤激光器。对线宽为20kHz、工作波长为1064nm的连续单频激光进行强度调制,得到了平均功率为0.5mW的单频脉冲种子激光。首先,采用三级掺Yb光纤放大器将种子激光进行预放大,获得了2.7W的平均功率。然后,以纤芯直径和内包层直径分别为30μm和250μm的双包层掺Yb光纤为主放大器,在抽运光功率为87.1W时,获得了重复频率为12MHz、脉宽约10ns、峰值功率为486.7W的单频脉冲激光输出,平均功率达58.4W。  相似文献   

18.
搭建了一台主振荡功率放大(MOPA)结构的单模线偏振窄线宽纳秒脉冲全光纤放大器,理论仿真和实验结果较为吻合。通过声光调制器(AOM)对连续单频1 064 nm激光进行调制,获得了重复频率50 kHz、平均功率25 W的脉冲激光,作为放大器的种子源。对预放大过程中非线性效应、放大自发辐射、自激振荡及泵浦饱和问题进行了仿真分析。随后对种子光进行功率放大,通过光纤内参数的有效优化,进一步抑制了自激振荡,提升了弱信号的放大倍率。实验实现了脉冲宽度64 ns、平均功率75 mW的脉冲激光输出。最后,对亚毫瓦弱信号放大器中决定系统性能的关键因素进行了总结。  相似文献   

19.
全光纤结构高增益脉冲光纤放大器的实验研究   总被引:1,自引:1,他引:0  
张鹏  段云锋  黄榜才  潘蓉  宁鼎 《激光技术》2009,33(5):452-452
为了探讨多级级联掺镱光纤放大器的脉冲放大特性,采用主振功率放大技术(MOPA),实验研究了3级级联、全光纤结构的高增益脉冲激光放大器。通过优化各放大级增益光纤的长度和抽运光功率的大小,在保证高放大增益的同时,抑制了掺镱光纤中自发辐射光的自生激光振荡,并对第2放大级进行了结构优化。在脉冲激光放大过程中实现了中心波长1064nm、脉冲宽度19ns、重复频率5kHz、峰值功率3.8kW、总放大增益达43.8dB的稳定激光输出。同时,制作完成了1台结构紧凑、全光纤结构的脉冲光纤放大器样机,对重复频率1Hz的低频脉冲信号进行了放大实验,也得到了43.2dB的输出信号增益。结果表明,本脉冲光纤放大器对低频脉冲信号有很好的放大效果。  相似文献   

20.
人眼安全相干多普勒测风激光雷达全光纤单频激光器   总被引:6,自引:2,他引:4  
为了满足近距离相干测风激光雷达对激光发射源的需求,采用种子源振荡-放大(MOPA)的工作方式,对小型化、全光纤、高重复频率、窄线宽并处于人眼安全工作波段的激光雷达用单频脉冲激光器进行了研究.实现激光输出波长1542.4 nm,重复频率10 kHz,脉冲宽度500 ns,线宽1 MHz,平均输出功率50 mW,峰值功率10 W,单脉冲能量5μJ.该激光器可作为近距离相干激光雷达发射源.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号