首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel tunable optoelectronic oscillator (OEO) based on a photonic radio frequency (RF) phase shifter is proposed and analyzed, which consists of a dual-drive Mach-Zehnder modulator (DMZM), a 90° hybrid coupler and a tunable microwave amplifier (TMA). This tunable OEO has a simple configuration, and the frequency of the oscillating signal can be tuned by adjusting the amplification factor of the tunable amplifier. The simulation results show that the maxi- mum frequency shift from the center oscillation frequency is 1.48 MHz when the amplification factor of the TMA is set at 10.  相似文献   

2.
基于可调谐真相移的可调谐光电振荡器   总被引:3,自引:3,他引:0  
提出一种基于真相移(TPS)实现可调谐光电振荡器( OEO)的方案。只需通过调谐Mach-Zehnder 调制器(MZM)的偏置电压,就可以实现可谐滤波器的频谱响应的改变,即可实现TPS滤波器。 其中,两个抽头的可调谐滤波器是由双光源、双调制器以及叠印光栅来实现。OEO的输出频 率由二抽头可调 谐滤波器的峰值频率决定,而滤波器可调谐,这样就可以实现输出OEO的输出频率可调。 仿真结果表明,输出频率可以实现5~10GHz宽带宽可调谐。  相似文献   

3.
In this paper, a dualband bandpass filter with independently tunable passband is proposed. Two half-wavelength resonators with shunt stub have been placed side by side, fed with a common input-output microstrip line to achieve the individual tunability without affecting other passband. For tuning resonance frequency, varactor diodes are used at the ends of the half wavelength resonators and also at the end of the shunt stubs. Proper shunt stub length and width are derived numerically in such a way that only one control voltage is required in each passband. Measured results show that lower passband can be tuned in a frequency range from 1.78 to 1.96 GHz, whereas the upper passband varies from 2.27 to 2.39 GHz individually. H shaped DGS is integrated below the input-output feed lines to suppress higher order harmonics up to 21 GHz with more than 19 dB attenuation.  相似文献   

4.
《Optical Fiber Technology》2014,20(3):235-238
A simple widely tunable wavelength spacing dual-wavelength single longitudinal mode (SLM) erbium doped fiber laser (EDFL) based on cascaded fiber Bragg gratings (FBGs) and birefringent fiber filter is proposed and demonstrated. Experimental results show that the lasing wavelength spacing is widely tunable in a range from 2 nm to 18 nm, which has potential to generate frequency tunable terahertz (THz) waves by beating the lasing dual-wavelength in a high speed photodetector. The birefringent fiber filter acts as an ultra-narrow bandpass filter and benefits the simultaneous oscillation of dual-wavelength in a single laser cavity. The output peak power of the lasing dual-wavelength is approximately equalized at room temperature, and a high optical signal-to-noise ratio (OSNR) is realized in the whole tuning range. The SLM operation of dual-wavelength fiber laser is verified by Fabry–Perot (F–P) scanning interferometer, and the clear eye diagram proves that the proposed fiber laser is effective in the application of fiber optic communication system.  相似文献   

5.
In this paper, a novel and simple widely tunable wavelength-spacing single longitudinal mode (SLM) dual-wavelength erbium-doped fiber laser (EDFL) based on the tunable filter group, a passive feedback fiber ring (FFR) and saturable absorber (SA), is proposed and demonstrated experimentally. Experiment results show that the wavelength spacing can tune from 0.8 nm up to 17 nm, which has potential to generate terahertz (THz) waves by photo-mixing the lasing wavelengths in a high-speed photo-detector, and the maximum fluctuation of peak power of EDFL is less than 0.37 dB within 75 min and the optical signal-to-noise ratio is more than 30 dB at room temperature. In the absence of high-speed photo-detector, THz beat-note is also successively observed with the help of an autocorrelator. Moreover, dual-wavelength fiber laser can selectively realize one wavelength lasing by simply tuning filters.  相似文献   

6.
A new tunable multiwavelength fiber laser is proposed. Such a laser contains a homogeneous and inhomogeneous broadening media, i.e., a Fabry–Perót laser diode and an erbium-doped fiber amplifier, in the laser cavity. The Fabry–Perót laser diode is used to obtain tunable multiwavelength lasing. By adjusting the injection current of the Fabry–Perót laser diode, emission at a single wavelength, dual wavelengths, triple wavelengths or quadruple wavelengths are obtained. The lasing wavelength is tuned by bending a section of fiber in the laser cavity. The tuning ranges for single wavelength lasing and dual wavelength lasing are 20 nm and 10 nm, respectively, while those for triple wavelength lasing and quadruple wavelength lasing are 7 nm and 3 nm, respectively.  相似文献   

7.
A continuously tunable microwave photonic notch filter with complex coefficient based on phase modulation is proposed and demonstrated. The complex coefficient is generated using a Fourier-domain optical processor (FD-OP) to control the amplitude and phase of the optical carrier and radio-frequency (RF) phase modulation sidebands. By controlling the FD-OP, the frequency response of the filter can be tuned in the full free spectral range (FSR) without changing the shape and the FSR of the frequency response. The results show that the center frequency of the notch filter can be continuously tuned from 17.582 GHz to 29.311 GHz with FSR of 11.729 GHz. The shape of the frequency response keeps unchanged when the phase is tuned.  相似文献   

8.
In this paper, a simple fiber coupled laser configuration to generate stable and tunable single-longitudinal-mode (SLM) optical output based on a pair of Fabry–Perot laser diode (FP-LD) using inter-injection operation is proposed and experimentally demonstrated. By adjusting the tunable filter inside the laser cavity to align the corresponding mode of the FP-LDs, the lasing wavelength can be tuned in the wavelength range of 1528.6–1562.2 nm with 1.4 nm tuning step. In addition, the output performance of the proposed fiber coupled laser has also been discussed.  相似文献   

9.
赵嘉熠  谷一英  胡晶晶  李建  赵明山  韩秀友 《红外与激光工程》2021,50(10):20200457-1-20200457-7
为实现具有高频谱纯度、低相位噪声的宽带可调谐微波信号生成,提出并通过实验验证了一种次谐波信号调制下光注入半导体激光器结构的光电振荡器,其原理为通过利用光注入半导体激光器的单周期(P1)振荡工作状态和波长选择放大特性实现可调微波信号生成,并进一步通过在光电振荡环路中引入次谐波信号调制对系统生成微波信号的频率稳定性、边模抑制比与频谱纯度进行优化。实验结果表明,文中方案提出的光电振荡器可以生成输出功率大于5 dBm,频率调谐范围为12~18 GHz的微波信号。同时,系统生成的微波信号的3 dB带宽为100 kHz,边模抑制比可达 51 dB,且信号在频偏量为100 Hz和10 kHz处的相位噪声分别为?78 dBc/Hz和?109 dBc/Hz。此外,光电振荡器生成微波信号的频率调谐范围只受系统中使用的各类光电器件工作带宽的限制,通过采用具有更大带宽的光电器件可以实现更高频率的微波信号生成。  相似文献   

10.
基于非线性色散补偿光栅的可调谐光电振荡器   总被引:5,自引:5,他引:0  
为实现光电振荡器(OEO)输出频率的连续可调,提出一种新型的基于非线性色散补偿光栅(FBG)实现可调谐OEO方案。本文方案不需要电滤波器,且振荡频率随着光源的波长变化而变化。其中,三阶色散补偿FBG可以采用FBG重构算法设计。当光源波长从1 550.6nm变化到1 551.4nm时,相应的色散为340~1 460ps/nm,输出频率的调谐范围为6.5~13.5GHz,实现了振荡频率的大范围可调谐。  相似文献   

11.
A wide-range automatic frequency tuning system for current-mode filters is proposed in this paper. The cutoff frequency of the tunable filter is controlled by an external reference signal and is locked in the desired frequency through a current-mode based phase locked loop (PLL) circuit. Although the PLL operates in a relatively narrow band, the total tuning range of the topology is extended by interpolating an automatic frequency detector after the reference input and before the PLL. The use of current controlled oscillator, based on same blocks with those in the filter, offers accuracy and feasible design in the control path. The topology has been simulated using MOS transistor models for a 130 nm CMOS technology in 0.8 V supply voltage. The achieved overall automatic tuning range was from 2.3 MHz to 660 MHz.  相似文献   

12.
《Microelectronics Journal》2015,46(2):125-134
This paper presents Floating gate MOS (FGMOS) based low-voltage low-power variant of recently proposed active element namely Voltage Differencing Inverting Buffered Amplifier (VDIBA). The proposed configuration operates at lower supply voltage ±0.75 V with the total quiescent power consumption of 1.5 mW at the biasing current of 100 µA. Further the operating frequency of the proposed VDIBA is improved by using the resistive compensation method of bandwidth extension in Operational Transconductance Amplifier (OTA) stage of the block. By using resistive compensation method of bandwidth extension, the bandwidth of OTA stage increases from 92.47 MHz to 220.67 MHz. As an application, proposed FGMOS based VDIBA has been used to realize a novel resistorless voltage mode (VM) universal filter. The proposed universal filter configuration is capable of realizing all the standard filter functions in both inverting and non-inverting forms simultaneously without any matching constraint. Other important features include independently tunable filter parameters, cascadibility and low sensitivity figure. The proposed filter is tunable over the frequency range of 4.1 MHz to 12.9 MHz and is capable of compensating for process, voltage and temperature (PVT) variation. The simulations are performed using SPICE and TSMC 0.18 µm CMOS technology parameters with±0.75 V supply voltage to validate the effectiveness of the proposed circuit.  相似文献   

13.
We demonstrate in this report the feasibility of using organic light-emitting diode (OLED) lighting device technology to fabricate light sources with chromaticity tunable between that of dusk-hue and candle-light. The resulting color temperature is tunable easily from 1580 K to 2600 K, covering that of dusk-hue (2500 K) and candle-light (1900 K) and providing a physiologically-friendly, melatonin suppression-less emission for illumination at night, along with a respective color rendering index varying from 68 to 91 and power efficiency from 20.9 to 2.7 lm/W at 10 to 23,690 cd/m2. The color temperature can also be tuned from high to low sequentially, such as from 5200 K to 2360 K, covering that of cool- and warm-white light for daytime illumination, by simply varying emissive layer thickness ratio. The comparatively high color rendering index as well as the large color temperature span and easy color temperature tunability may be attributed to the employment of four blackbody radiation-complementary emitters. The emission ranges from red to sky-blue, which were dispersed into three separated emissive layers coupling with the use of a nano-layer of hole modulation material.  相似文献   

14.
This paper presents the design and implementation of a tunable CMOS Wilkinson power divider using active inductors. Compared to a conventional active inductor topology, the proposed active inductor features higher inductance tuning range, higher self-resonant frequency, and lower power consumption by introducing two additional transistors. Benefitting from the superior inductor, the low-loss Wilkinson power divider is practical while maintaining a wide tuning range. The design consuming 10.2 mW demonstrates an insertion loss of 0.67 dB, a return loss of 27 dB, and an isolation of 22.6 dB at 8 GHz. Moreover, the tuning range of the circuit is between 5.8 GHz and 10.4 GHz, rendering a 4.6 GHz bandwidth. The active chip size of the lumped design is merely 0.25 mm × 0.15 mm.  相似文献   

15.
In this paper a bilateral resistive circuit is designed and presented with is work as a positive and negative electronically tunable resistor and has zero DC offset. The proposed topology is designed by paralleling two electronically tunable resistors to obtain lower resistive values and decreasing nonlinearity percent. The proposed topology is low voltage and low power and with proper transcurrent circuit, its current–voltage characteristics can be linear, expansive (square) and compressive (square root). Its supply voltages are ±1 V and its dynamic range is ±1 V too. The designed circuit is simulated in an industrial 65 nm CMOS process. The linear version is tunable over the wide resistance range of 7 kΩ–37 GΩ.  相似文献   

16.
为了实现光电振荡器(OEO)输出频率的可调谐,提出了一种基于外调制激光的频率可调谐光电振荡器。此方案在单环OEO的基础上增加一个由微波滤波器、电衰减器、电放大器和电移相器构成的电增益选频腔,通过调节电移相器的偏置电压可以等效改变电选频腔的腔长,从而改变其输出微波信号的频率;同时调节光延时线来改变光电振荡器的起振模式,通过电增益选频腔信号与光电振荡器自由振荡信号的电注入锁定,即可实现频率可调谐的光电振荡器,其输出信号的频率由锁定OEO模式的电增益选频腔决定。实验结果表明,本方案产生了频率调谐范围为10.05 GHz~10.09 GHz、调谐步长为400 kHz的输出信号,频率在40 MHz的范围内连续可调谐。在输出频率为10.0519 GHz时,其边模抑制比为60 dB,相位噪声为-115 dBc/Hz @10 kHz。该方案结构简单,既保留了单环OEO低相位噪声的优势,又能有效抑制边模,为实现频率可调谐OEO提供了一种新的方法。  相似文献   

17.
Continuous time current-mode high-order low-pass and band-pass filters based on the log-domain concept are presented in this paper. The passive RLC ladder networks are used as the prototype to achieve the proposed filter by simulating the RLC network synthesis method. The achieved filters have inherited the good sensitivity performance from the RLC passive prototype. Fifth-order RLC ladder low-pass filter and sixth-order RLC ladder band-pass filter are used as prototypes and the signal flow graph (SFG) technique is used for the synthesis. The SFG can identify group of integrators and several signal paths. Log-domain lossy and lossless integrators based on BJT technology are deployed to achieve the integrators for realization of proposed filters. The simulations were carried out and the results exhibited several features which are in agreement with the RLC prototype. The frequency response of filters along 100 kHz to 10 MHz can be electronically tuned through 5–500 µA of bias currents. The THD lower than 1% of LP and BP filters were measured at 10 MHz input. The multi-tone tested was included in the paper for verifying the performance of proposed LP and BP filters. The intermodulation distortions around −50 dB and −60 dB were also investigated for the proposed LP and BP filters.  相似文献   

18.
A band reject filter with tuning capability is presented on a CPW transmission line on silicon substrate using comb line and RF MEMS variable capacitor, enabling compatibility with planar IC technology. A conventional CPW on a substrate consists of a central strip conductor with semi-infinite ground planes on either side. A comb line is etched on the signal line of the CPW and the MEMS bridge capacitor is put on the same line in shunt. Tunability of the filter is achieved by putting the MEMS bridge in either up or down state. The rejection at the centre frequency of stop bands are around ?40.24 dB for down state and ?38.21 dB for up state of the bridge. A low insertion loss, as low as ?0.68 dB, is obtained in the pass band. The proposed device structure is simulated using ANSOFT HFSS v13® for RF analysis and COVENTORWARE (2008)® for mechanical and electromechanical characterization, both static and transient analysis.  相似文献   

19.
In this paper, we report a simple method for the production of an all-fiber, tunable and wavelength switchable erbium-doped fiber ring laser (EDFRL). We use the shift in resonance wavelength and notch-depth of arc-induced long-period fiber gratings (LPFGs) when it is subject to controlled bend to suppress some wavelength gain and promote lasing in a selective way in a fiber laser system. By changing the bending radius, the operating wavelength of the EDFRL can be tuned from 1526 to 1538 nm and then switched and tuned from 1568 to 1557 nm. The maximum separation measured between laser lines was ~42 nm. This is one of the highest laser separations reported in a wavelength switching operation of an EDFL using a single LPFG as wavelength selective filter.  相似文献   

20.
《Optical Fiber Technology》2013,19(3):189-193
This paper presents a dense wavelength-division multiplexing (DWDM) routing device based on a pair of 1 × N and N × 1 cyclic array waveguide gratings (AWGs) and tunable fiber Bragg gratings (FBGs) to configure all channels in a dynamic network. With the AWG cyclic spectral routing rule, all the DWDM channels (e.g., more than 8 DWDM channels can be configured based on a pair of cyclic 1 × 8 and 8 × 1 AWGs) can be added and dropped by using the multiple tunable FBGs to reflect the channels that need to be dropped to the drop port as well as to reflect the local DWDM channels that are same as the drop wavelength channels to the output port. Three DWDM channels are demonstrated to verify that all the DWDM channels can be added and dropped in one pair of cyclic AWGs. The results show that the proposed DWDM routing device is feasible to use and offers more flexibility in all-optics dynamic networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号