首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 544 毫秒
1.
高功率二极管抽运YLF系统采用近场注入、近场输出的离轴双程放大结构,激光头采用微透镜准直LD发出的抽运光,Lensduct汇聚抽运光,并利用匀束器改善抽运光的空间分布,达到对YLF均匀抽运. 对该系统进行了模拟计算,表明系统在注入能量为22 μJ时,输出为180 mJ,系统的净增益约为3000倍,光束畸变很小. 实验研究得知:对激光头单独研究表明,微透镜将LD快轴方向的抽运光由超过40°准直为10°以下,lensduct的耦合效率达到75%,其光-光转换效率为24%;系统的静态损耗为45%,系统的单通增益为9,净增益为3600倍,在注入能量为40 μJ时,输出能量为近150 mJ.(OC18)  相似文献   

2.
激光二极管侧抽运Nd:YLF多程放大实验研究   总被引:2,自引:0,他引:2  
王之桐  陈三斌 《中国激光》2005,32(5):90-592
进行了激光二极管侧抽运Nd:YLF多程放大实验研究.设计了高增益的激光二极管侧抽运Nd:YLF放大腔,通过对放大器的优化设计避免了自激的出现.放大器工作波长为1053 nm,工作物质为c轴Nd:YLF,重复频率1 Hz,采用单个放大腔四程放大的光路结构,放大腔总抽运功率为1.8 kW,激光二极管的中心波长为797 nm,放大腔中激光二极管采用环状密耦合的方式,实现了高效抽运.种子激光能量为0.1μJ,脉宽为7.5 ns,M2≤1.1,稳定性为±8%.放大器输出能量为2.9 mJ,脉宽为6.7 ns,M2平均为1.65,稳定性为±6.9%,总增益为2.9×104倍.  相似文献   

3.
热退偏损耗完全补偿的千赫兹电光调Q Nd:YAG激光器   总被引:3,自引:1,他引:3  
冯永伟  戴殊韬  朱小磊 《中国激光》2007,34(9):1190-1193
为了同时补偿固体增益介质的热致双折射及热透镜效应,进一步提高重复频率1 kHz激光二极管(LD)侧向抽运高平均功率电光调QNd∶YAG激光器的输出功率,设计了一种完全消除热退偏损耗的双调Q开关谐振腔结构,此结构在传统调Q谐振腔的基础上沿着偏振片的退偏方向增加了一个调Q谐振支路,并使得激光从增益介质方向输出.实验结果表明,此激光器的单脉冲能量比单Q开关结构的非补偿腔输出能量高出74.7%.当侧面抽运的激光二极管输出脉冲能量达到307 mJ时,激光输出能量达到26.2 mJ,光-光转换效率为8.5%,光束发散角为1 mrad.  相似文献   

4.
王之桐  陈三斌 《中国激光》2005,32(5):590-592
进行了激光二极管侧抽运Nd∶YLF多程放大实验研究。设计了高增益的激光二极管侧抽运Nd∶YLF放大腔,通过对放大器的优化设计避免了自激的出现。放大器工作波长为1053nm,工作物质为c轴Nd∶YLF,重复频率1Hz,采用单个放大腔四程放大的光路结构,放大腔总抽运功率为1.8kW,激光二极管的中心波长为797nm,放大腔中激光二极管采用环状密耦合的方式,实现了高效抽运。种子激光能量为0.1μJ,脉宽为7.5ns,M2≤1.1,稳定性为±8%。放大器输出能量为2.9mJ,脉宽为6.7ns,M2平均为1.65,稳定性为±6.9%,总增益为2.9×104倍。  相似文献   

5.
热畸变对单板条热容激光器输出的影响   总被引:1,自引:1,他引:1  
开展了激光二极管(LD)抽运的全固态热容激光器的理论与实验研究,数值模拟了在热容工作条件下侧面抽运的Nd∶YAG板条激光器的热透镜效应,分析了热透镜效应对激光输出的影响,并进行了相应的实验论证。实验中采用的晶体尺寸为57mm×40mm×4mm,激光二极管阵列的抽运峰值功率为12kW,重复频率为1kHz,占空比为20%,为了获得较高的增益,将抽运光通过光学系统进行聚焦,抽运光在晶体侧面的光斑大小为15mm×57mm.实验中观察了1s内的脉冲能量输出的波动情况,在开始工作的时候单脉冲能量输出为1J,在1s后单脉冲能量输出下降到开始的50%。  相似文献   

6.
结合板条激光器和薄片激光器的特点设计了一种表层增益板条激光器结构。采用基于慢轴像中继的抽运耦合系统实现抽运光在板条宽度方向的均匀分布。利用表层增益板条激光器实现了稳定的准连续激光输出,在抽运频率300Hz、抽运脉宽200μs,抽运单脉冲能量354mJ条件下,实现了单脉冲能量121.3mJ的1064nm激光输出,对应的光光转换效率和斜率效率分别为34.3%和45%。  相似文献   

7.
结合短脉冲光参量放大抽运源的需求,基于固体放大技术,对光纤锁模激光器输出的6nm带宽皮秒纳焦耳级激光脉冲进行放大,获得了6.2mJ的基频以及3.0mJ的倍频输出,输出脉冲的时间宽度为8.6ps,倍频光峰值功率密度为4.94GW/cm2。采用高增益的Nd3+…YLF再生放大器做前级放大器,利用其光谱增益窄化效应获得窄带的高功率光参量放大抽运光。理论计算表明,在此增益条件下,输出激光的光谱将被窄化至0.3nm。采取了合理的空间整形方案,输出激光的近场呈平顶分布,光束质量优良。再生放大器采用钢棒结构,降低温度变化对系统稳定性的影响,总能量输出稳定性优于1%(RMS)。  相似文献   

8.
2 μm Tm,Ho:YLF激光抽运ZnGeP2光参量振荡技术研究   总被引:4,自引:5,他引:4  
ZnGeP2晶体具有宽的透明范围(0.7~12 μm),较大的非线性系数(d36=75 pm/V),最高损伤阈值能量密度为10 J/em2,较高的热导率(0.18 W/(m·K)),因而非常适合作为高功率中红外光参量振荡器(OPO)晶体.理论上分析了ZnGeP2光参量振荡器相位匹配特性,实现3~5 μm连续调谐范围输出的Ⅰ类相位匹配角在52.5~55.2°之间.实验上,以15 W光纤耦合激光二极管(LD)抽运的2.05 μm高重复频率声光调Q Tm,Ho:YLF激光器作为抽运源,其最大平均功率4 W,脉冲宽度小于40 ns,脉冲重复频率100 Hz~10 kHz可调.为降低准三能级系统激光器阈值,提高激光脉冲能量抽取效率,Tm,Ho:YLF晶体采用液氮制冷方式,工作在77 K温度条件下.非线性频率转换晶体ZnGeP2长15 mm,55.7°切割,光参量振荡器谐振腔为平平腔,腔长约20 mm.在3.6 W的抽运功率下,脉冲重复频率10 kHz,实现了4.1 μm附近中红外激光输出,参量光脉冲宽度为20 ns,平均输出功率为0.7 W,光-光转换效率为20%,抽运光阈值功率为0.65 W.  相似文献   

9.
报道了一种激光二极管(LD)双末端抽运Tm:YLF激光器,在1.9 μm处获得了连续波(CW)输出。1.9 μm激光可用于抽运Ho晶体获得2 μm激光。在理论上,分析了掺Tm3+激光器的运转机制和能量转换损耗,计算出Tm:YLF激光器在理论上的斜率效率达到50%。在实验上,抽运源使用工作波长为792 nm的光纤耦合激光二极管,抽运光均分为两束双端抽运Tm:YLF晶体,两块晶体串接在折叠腔内。Tm:YLF 晶体的掺杂原子数分数为4%, 尺寸为3 mm×3 mm×12 mm。测量了输出镜在不同透射率情况下激光器的输出激光波长,当输出镜透射率T=26%时,在1.9μm处获得20.1 W的连续波激光输出,相应的抽运功率为75 W,阈值抽运功率为9 W,斜率效率为34%,光-光转换效率为27%。  相似文献   

10.
LD端面抽运Nd:YLF/Nd:YAG多波长脉冲激光器   总被引:2,自引:2,他引:0  
报道了一台激光二极管(LD)双端面抽运Nd:YLF和Nd:YAG双晶体串接多波长输出脉冲激光器。在抽运能量40.5mJ,电光调Q重复频率500Hz的工作条件下,获得单脉冲能量约为6mJ的1064nm/1053nm双波长激光脉冲输出,光-光转换效率约为14.8%。相同抽运条件下在腔内插入I类相位匹配LBO晶体作为非线性频率转换器,获得了脉冲总能量为3.6mJ的526.5、529.0、532.0nm三波长同时输出,由抽运光到输出绿光脉冲的转换效率约为8.9%,测得光束质量因子分别为M2x=1.61,My2=1.25。  相似文献   

11.
高稳定激光二极管抽运Nd:YLF再生放大器   总被引:3,自引:3,他引:0  
设计并实现了一种放大纳秒激光脉冲的高稳定的激光二极管(LD)抽运Nd:YLF再生放大器.为了获得高稳定的输出,再生放大器工作在饱和状态.此时,再生放大器输出稳定性最好,而且注入激光脉冲能量波动引起的输出激光脉冲波动被抑制.由于增益饱和效应,再生放大器输出脉冲出现时域波形失真,附加后缀脉冲能够减弱时域波形失真.放大器工作波长1053 nm,工作频率1 Hz.输入240 pJ的3 ns方波激光脉冲,输出激光脉冲能量4.2 mJ,总增益大于107,不稳定度小于1%(均方根),方波扭曲1.33.为3 ns方波激光脉冲引入其本身幅度0.75倍的后缀脉冲,输出激光脉冲方波扭曲由1.33降至1.17.  相似文献   

12.
设计并实现了一种放大纳秒激光脉冲的高稳定的激光二极管(LD)抽运Nd∶YLF再生放大器。为了获得高稳定的输出,再生放大器工作在饱和状态。此时,再生放大器输出稳定性最好,而且注入激光脉冲能量波动引起的输出激光脉冲波动被抑制。由于增益饱和效应,再生放大器输出脉冲出现时域波形失真,附加后缀脉冲能够减弱时域波形失真。放大器工作波长1053nm,工作频率1Hz。输入240pJ的3ns方波激光脉冲,输出激光脉冲能量4.2mJ,总增益大于107,不稳定度小于1%(均方根),方波扭曲1.33。为3ns方波激光脉冲引入其本身幅度0.75倍的后缀脉冲,输出激光脉冲方波扭曲由1.33降至1.17。  相似文献   

13.
利用脉冲式半导体激光器(LD)具有高峰值功率的优点,通过对抽运光和基频光的模式进行匹配,构建了一台脉冲式LD抽运腔倒空结构的主振荡器和功率放大器,并对其进行了腔外倍频实验。实验结果表明,系统实现了非常紧凑的结构,脉冲式LD抽运的方式能够提高振荡器和功率放大级的能量输出,更好地消除热畸变的影响,从振荡器可以获得脉冲宽度达3.7 ns、脉冲能量约为4 mJ的基频激光脉冲输出,经功率放大和腔外倍频后,能够得到脉宽3.4 ns、脉冲能量为3.2 mJ的绿光输出,倍频效率为40%,脉冲峰值稳定性为5%(均方根值),发散角约为0.5 mrad。  相似文献   

14.
低温下运行的LD抽运Tm,Ho:YLF激光器   总被引:1,自引:1,他引:0  
研究了在低温条件下,利用功率为2 W的激光二极管(LD)抽运液氮制冷Tm(6%),Ho(0.5%):YLF激光器,产生波长为2.05 μm的线偏振连续激光输出,最大功率350 mW,光-光转换效率为20%.  相似文献   

15.
低阈值宽调谐PPLN光参量振荡   总被引:11,自引:8,他引:3  
用半导体激光 (LD)抽运的声光调QNd∶YVO4 激光器做抽运源 ,实现了准位相匹配的光参量输出 ,其调谐范围为 1 4 36~ 1 7μm。非线性光学介质是多周期极化的LiNbO3 (PPLN)。光参量振荡阈值 10 3μJ(脉宽 2 2ns) ,在抽运光达到阈值 3 3倍的条件下 ,信号光输出能量 4 2 5 μJ ,斜效率 12 5 %。  相似文献   

16.
激光二极管阵列侧面对称抽运薄片激光器   总被引:9,自引:4,他引:5  
对激光二极管(LD)阵列5向侧面对称抽运Nd∶YAG薄片激光器进行了实验和模拟研究。薄片激光器的耦合系统由消像差透镜组和空心光波导组成,采用15mm×1.5mm的Nd∶YAG薄片进行初步实验,实验得到薄片激光器的激光输出平均功率为65.7W,光-光转换效率为10.5%,同时增益介质内具有较理想的荧光分布。同时考虑激光二极管在快轴和慢轴方向的发散特性及增益介质侧面的散射特性,采用光线追迹法,模拟并分析了增益介质内抽运光分布,模拟结果表明耦合系统具有88.3%的耦合效率,同时增益介质内具有较理想的抽运光分布,且与实验结果相吻合。  相似文献   

17.
二极管抽运200Hz TEM00模Q开关Nd:YAG激光器   总被引:1,自引:0,他引:1  
用三只QCW-600W激光二极管侧面抽运Nd:YAG激光器,在重复频率为200Hz,单脉冲注入能量为270mJ条件下,实现了29.7mJ,TEM00模调Q激光输出,M2=1.12,脉宽6.4ns,光-光转换效率11%,斜效率16.5%,输出能量不稳定度1.14%.通过KTP晶体腔外倍频,获得了单脉冲能量16.8mJ,脉宽5.6ns的绿光输出,倍频效率56.6%.  相似文献   

18.
重复频率3Hz、100mJ高光束质量钕玻璃放大器的研制   总被引:2,自引:2,他引:0  
研制了具有放大纳秒方形激光脉冲的高光束质量、高稳定的激光二极管(LD)抽运的钕玻璃激光放大器。为了获得较高的输出能量,采用LD泵浦的"串联式双程放大"高增益组件进行能量放大。为了获得高光束质量的光斑,利用液晶空间光调制器(LCSLM)对光束近场分布进行空间整形,使之产生特定的空间分布,进而对后级放大器增益不均匀性进行光学预补偿。放大器工作波长为1 053nm,工作频率为3 Hz,输入1nJ的3ns方形激光脉冲,输出激光脉冲能量为100mJ、光束口径为10mm×10mm的方光斑,能量不稳定度小于2%(均方根),净增益大于109。光束的近场调制度小于1.3∶1,远场焦斑衍射极限小于2DL,远场角漂移小于9.5μrad。  相似文献   

19.
高效大功率激光二极管阵列端面抽运耦合系统   总被引:6,自引:2,他引:4  
利用光线追迹法为12 kW激光二极管(LD)阵列抽运的Yb∶YAG激光器设计了一套空心导管型耦合系统并开展了耦合实验, 以研究大功率LD阵列端面抽运结构的高效耦合技术及模拟设计方法.基于LD结构和发光特性,以高斯型微激射元为基本单位建立单条LD和LD阵列光源模型,设计了由透镜和镀银板构成的抽运光汇聚传输系统.实验结果表明,该耦合系统实现了对抽运光的高效耦合,且强度分布与模拟结果一致.该耦合系统传输损耗低,反射板的反射率为94%时耦合效率达92.3%;输出光束具有良好的传输性能,有效抽运区域接近理论值,且增益介质表面分布均匀,满足实验要求.  相似文献   

20.
搭建了一台中等重复频率、高峰值功率的Nd:YAG激光器。激光器主要包括三部分:单纵模全光纤种子源、LD抽运的Nd:YAG再生放大器和氙灯抽运的Nd:YAG功率放大器。该系统获得了平均功率为12W、重复频率为10Hz、单脉冲能量为1.2J、脉冲宽度为3ns的激光输出,工作波长为1064nm,输出光束口径为10mm,95%的能量在600μrad范围内,近场光强近平顶分布,近场光强调制度小于1.2,时间波形近似方波,能量稳定性均方根值小于1.4%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号