首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
内腔泵浦的BaWO4反斯托克斯拉曼激光器实验研究   总被引:2,自引:2,他引:0  
实验研究了内腔BaWO4反斯托克斯拉曼激光器的激光特性。通过在调Q的基频谐振腔中插入一倾斜的BaWO4拉曼谐振腔,实现基频光、一阶斯托克斯光和一阶反斯托克斯光的非共线相位匹配,进而实现了内腔反斯托克斯拉曼激光器在968nm的运转。测量了不同泵浦电压下输出的一阶反斯托克斯光的单脉冲能量,当泵浦电压为750V时,获得的最大输出能量为0.79mJ,相应的基频光到一阶反斯托克斯光的转化效率为1.5%。一阶反斯托克斯光的典型脉冲宽度为4.9ns。  相似文献   

2.
研究了外腔钨酸铅(PbWO4)拉曼激光器的输出特性,介绍了由1064nm纳秒脉冲激发的PbWO4固态拉曼放大器。实验所用的抽运源是电光调Q的Nd…YAG纳秒激光器。对于外腔PbWO4拉曼激光器,当入射抽运脉冲能量为40mJ时,实验测得一阶斯托克斯脉冲的最大转换效率为13%,当入射抽运脉冲能量为48mJ时,实验得到包括一阶斯托克斯脉冲在内的总散射光的转换效率为34%,获得的二阶斯托克斯脉冲的转换效率为23%。PbWO4拉曼放大器是对外腔PbWO4拉曼激光器产生的一阶斯托克斯脉冲进行放大,实验获得的放大后一阶斯托克斯脉冲的最大输出能量为11mJ,放大倍数为3.3。  相似文献   

3.
研究了激光二极管(LD)端面抽运的主动调Q内腔式Nd∶YAG/GdVO4拉曼激光器的激光特性,测量了不同抽运功率和脉冲重复频率条件下的平均输出功率和脉冲宽度.当注入的抽运功率为[7.44 W,脉冲重复频率为20 kHz时获得的1174.5 nm拉曼光的最大平均输出功率为1.3 W,对应的光-光转换效率为17.4%;当注入抽运功率为6.8 W,脉冲重复频率为[15 kHz时获得的1174.5 nm拉曼光的最大单脉冲能量为74.4 μJ.与Nd∶GdVO4自拉曼激光器进行实验比较和分析,实验结果表明主动调Q内腔式Nd∶YAG/GdVO4拉曼激光器可以获得比Nd∶GdVO4自拉曼激光器更高的平均输出功率和转换效率.  相似文献   

4.
使用磷酸钛氧钾(KTiOPO_4,KTP)晶体,采用斯托克斯参量振荡器与太赫兹波表面垂直出射的斯托克斯参量放大器相结合的实验方案,获得了大能量的太赫兹波输出。抽运源是调Q脉冲激光器,输出波长为1064.2 nm,脉宽为7.5 ns,脉冲重复频率为1 Hz。斯托克斯光波长为1086.2 nm,抽运光与斯托克斯光的夹角为4.4°,太赫兹波频率为5.7 THz。抽运光路上的延时装置可以保证抽运光脉冲与待放大斯托克斯光脉冲有很好的时间重合性。当抽运光脉冲能量为770 mJ、待放大斯托克斯光脉冲能量为16.8 mJ时,放大后斯托克斯光脉冲能量为185.4 mJ,太赫兹波脉冲能量最大为6.4μJ。  相似文献   

5.
贾鹏  张行愚  王青圃  丁双红  苏富芳 《中国激光》2006,33(10):1309-1313
研究了激光二极管(LD)抽运的自拉曼Nd∶YVO4调Q激光器的特性。Nd∶YVO4晶体同时作为激光介质和拉曼晶体,通过声光调Q技术,产生了1176 nm的拉曼激光。测量了平均输出功率、脉冲宽度和单脉冲能量随抽运功率和脉冲重复率的变化。典型的1064 nm基频光和1176 nm拉曼光脉冲的脉冲宽度分别为26.3 ns和9.0 ns。在脉冲重复率为20 kHz,抽运功率为8.46 W时,产生了平均功率为0.384 W的1176 nm光的输出,光-光转换效率为4.54%。使用速率方程对自拉曼Nd∶YVO4调Q激光器特性进行了理论研究,把脉冲重复率为10 kHz,20 kHz,30 kHz时拉曼光单脉冲能量和脉冲宽度的实验值与理论值进行了比较,结果基本相符。  相似文献   

6.
激光二极管抽运的自拉曼Nd:YVO4激光器   总被引:2,自引:1,他引:2  
研究了激光二极管(LD)抽运的白拉曼Nd:YVO4调Q激光器的特性。Nd:YVO4晶体同时作为激光介质和拉曼晶体,通过声光调Q技术,产生了1176nm的拉曼激光。测量了平均输出功率、脉冲宽度和单脉冲能量随抽运功率和脉冲重复率的变化。典型的1064nm基频光和1176nm拉曼光脉冲的脉冲宽度分别为26.3ns和9.0ns。在脉冲重复率为20kHz,抽运功率为8.46W时,产生了平均功率为0.384W的1176nm光的输出,光-光转换效率为4.54%。使用速率方程对白拉曼Nd:YVO4调Q激光器特性进行了理论研究,把脉冲重复率为10kHz,20kHz,30kHz时拉曼光单脉冲能量和脉冲宽度的实验值与理论值进行了比较,结果基本相符。  相似文献   

7.
采用激光二极管(LD)抽运Cr4+:YAG被动调Q内腔式PbWO4锁模拉曼激光器获得了稳定的、调制深度为100%的调Q锁模拉曼脉冲。抽运功率为6.3W时,获得的锁模拉曼激光输出功率为582mW,抽运光到一阶斯托克斯光的转换效率为9.24%,斜效率为10.6%,调Q脉冲重复频率为41.3kHz,脉宽为6ns,锁模脉冲重复频率为1.1GHz,锁模脉冲宽度小于207ps。  相似文献   

8.
全固体腔内倍频Nd:YAG/SrWO4/KTP拉曼激光器   总被引:1,自引:0,他引:1  
报道了以KTP晶体作为倍频介质,以Nd:YAG晶体作为激活介质,以SrWO4晶体作为拉曼介质的折叠腔型主动调Q腔内倍频拉曼激光器的输出特性,给出了输出黄光平均功率、脉冲能最、脉冲宽度随激光二极管(LD)抽运功率及脉冲重复率的变化关系.在输入抽运功率为12.6 W,脉冲重复率为20 kHz时,获得了1.4 W的590 nm激光输出,从LD到黄光的转换效率为11.1%.在输入抽运功率为12.6 W,脉冲重复率为10 kHz时,单脉冲能量为122 μJ,脉冲宽度为4.0 ns.相应的脉冲峰值功率为30.5 kW.  相似文献   

9.
报道了半导体激光端面抽运Nd:YAP晶体产生的1080 nm基频光驱动纯YVO4晶体的被动调Q拉曼激光特性。利用初始透过率85%的Cr4+:YAG/YAG复合晶体作为可饱和吸收体,以a切YVO4晶体的890 cm-1拉曼频移为研究对象,研究了一阶斯托克斯光的输出功率和脉冲特性。在抽运功率为9.87 W时,获得了平均输出功率0.76 W的1195 nm一阶斯托克斯光,转化效率为7.7%。脉冲重复频率从阈值附近约3.7 kHz持续增加至33.5 kHz。最高抽运功率下,脉冲宽度为1.5 ns,对应最大单脉冲能量为22.8 μJ,最高峰值功率为15.2 kW。  相似文献   

10.
固体三倍频激光在高压H2中受激拉曼散射的实验研究   总被引:3,自引:2,他引:1  
利用Nd∶YAG激光器的三倍频输出 (35 5nm)在H2 中的受激拉曼散射 (SRS)获得波长在 2 0 4~ 86 7nm范围内的激光输出。当抽运能量为 70mJ时观察到四阶Stokes光和五阶Anti Stokes光 ,其中第一阶Stokes光 (416nm)输出能量为 2 8 7mJ,第二阶Stokes光 (5 0 3nm)输出能量为 16mJ,一阶Anti Stokes光 (30 9nm)输出能量为 3mJ。研究了H2 压力和各阶Stokes光能量的关系 ,同时观察到环行光斑和脉宽压缩现象。  相似文献   

11.
报道了基于半导体激光端面抽运的a切Nd:GdVO4晶体级联自拉曼激光的输出特性。利用Nd:GdVO4晶体的优异激光特性和较强的拉曼增益,结合使用针对级联拉曼设计的宽带高反腔镜,在声光Q开光调制下,成功实现了基于882 cm-1频移的1 309 nm波长二阶斯托克斯激光输出。在10 W入射抽运功率和50 kHz重复频率下,获得了平均输出功率1.48 W,脉冲宽度5.3 ns的1 309 nm激光输出,对应的二阶斯托克斯激光阈值和光光转换效率分别为5.9 W和14.8%。结果表明:以Nd:GdVO4作为自拉曼晶体,通过级联拉曼可实现高效二阶斯托克斯激光输出,对丰富固体激光波长具有重要价值。  相似文献   

12.
LD端面抽运Nd:YLF/Nd:YAG多波长脉冲激光器   总被引:2,自引:2,他引:0  
报道了一台激光二极管(LD)双端面抽运Nd:YLF和Nd:YAG双晶体串接多波长输出脉冲激光器。在抽运能量40.5mJ,电光调Q重复频率500Hz的工作条件下,获得单脉冲能量约为6mJ的1064nm/1053nm双波长激光脉冲输出,光-光转换效率约为14.8%。相同抽运条件下在腔内插入I类相位匹配LBO晶体作为非线性频率转换器,获得了脉冲总能量为3.6mJ的526.5、529.0、532.0nm三波长同时输出,由抽运光到输出绿光脉冲的转换效率约为8.9%,测得光束质量因子分别为M2x=1.61,My2=1.25。  相似文献   

13.
报道了一种基于环形腔结构的种子注入式太赫兹参量振荡器的运转特性,非线性晶体为MgO:LiNbO3,太赫兹波采用垂直表面耦合的输出方式,斯托克斯环形腔由3个腔镜和MgO:LiNbO3晶体的全反射面构成。抽运源为调Q脉冲激光器,其输出波长为1064.2nm,脉冲宽度为7.5ns。当抽运脉冲能量为105.5mJ、斯托克斯光输出镜的透过率为20.1%时,获得的太赫兹波脉冲能量使得示波器的输出电压为3.3V,对应的斯托克斯光脉冲能量为16.1mJ,抽运脉冲能量阈值约为10mJ。在相同的抽运条件下,将基于环形腔结构的种子注入式太赫兹参量振荡器、种子注入式太赫兹参量产生器与环形腔结构的无种子注入式太赫兹参量振荡器的输出能量和抽运脉冲能量阈值进行比较。结果表明,基于环形腔结构的种子注入式太赫兹参量振荡器具有较高的输出能量及较低的抽运脉冲能量阈值,当抽运脉冲能量较小时,其在输出能量方面的优势更明显。  相似文献   

14.
研究了外腔式KGd(WO4)2 Raman激光器在红外纳秒脉冲抽运下的输出特性,通过改变KGd(WO4)2晶体的方位,实验得到了1159nm、1178nm、1272nm和1317nm 4个波长的红外Raman激光输出。波长为1159nm和1178nm的一阶Stokes脉冲的最大输出能量分别为23.9mJ和19.2mJ,相应的转换效率分别为34.8%和28%;波长为1272nm和1317nm的二阶Stokes脉冲的最大输出能量分别为17.6mJ和15.2mJ,相应的转换效率分别为28.1%和22.7%。  相似文献   

15.
采用Cr4+:YAG作为饱和吸收体,实现了结构 紧凑的全固态半导体泵浦被动调Q内腔式钨酸锶(SrWO4) 拉曼激光器,获得了稳定的、高效率的一阶斯托克斯拉曼光,并研究了激光器运转中拉曼光 的偏振特性。泵 浦抽运功率为5.8W时,获得的拉曼激光输出功率为968mW,调Q 脉冲重复率为49kHz,脉宽为7ns, 抽运光到一阶斯托克斯光的转换效率为16.7%,斜效率为18. 6%。这是目前报道的被动调 Q内腔式固 体拉曼激光器所获得的最高转换效率。  相似文献   

16.
为了研究低能量的1.06μm调Q激光脉冲抽运的增益开关型Cr4+∶Mg2SiO4激光器,对该激光器的速率方程进行数值求解,并选取合适的初始条件,得到输出的1.22μm激光脉冲的时间波形、脉冲的建立时间和脉冲宽度与抽运能量的关系,理论计算与实验研究结果基本符合.当抽运激光脉冲的能量为45mJ、脉冲宽度为30ns时,激光器输出的1.22μm激光脉冲的能量和脉宽分别是7mJ 和8.2ns.输出激光的脉冲宽度是抽运激光的脉冲宽度的近1/4,光-光转换效率为15.5%.数值计算和实验研究结果均表明,在低能量抽运情况下,激光脉冲的建立时间和脉冲宽度均随着抽运能量的增加而减小.  相似文献   

17.
为了研究低能量的1.06μm调Q激光脉冲抽运的增益开关型Cr4+:Mg2SiO4激光器,对该激光器的速率方程进行数值求解,并选取合适的初始条件,得到输出的1.22μm激光脉冲的时间波形、脉冲的建立时间和脉冲宽度与抽运能量的关系,理论计算与实验研究结果基本符合。当抽运激光脉冲的能量为45mJ、脉冲宽度为30ns时,激光器输出的1.22μm激光脉冲的能量和脉宽分别是7mJ和8.2ns。输出激光的脉冲宽度是抽运激光的脉冲宽度的近1/4,光-光转换效率为15.5%。数值计算和实验研究结果均表明,在低能量抽运情况下,激光脉冲的建立时间和脉冲宽度均随着抽运能量的增加而减小。  相似文献   

18.
利用 Nd:YAG四倍频激光抽运氘气 (D2 )的受激拉曼效应 ,获得一阶斯托克斯 (Stokes)波长2 89nm。通过改变拉曼介质 D2 气压与抽运光能量 ,获得了一阶斯托克斯输出的较佳条件。该波长与 Xe Cl准分子激光波长 30 8nm采用差分吸收方法 ,建立了用于对流层臭氧探测的激光雷达 ,并初步获得了对流层大气臭氧的垂直分布及其时间变化特征。  相似文献   

19.
实验研究了具有单斜独居石结构的钒酸镧(m-LaVO_4)晶体的室温拉曼光谱,报道了基于m-LaVO_4晶体作为拉曼增益介质的主动调Q内腔式脉冲拉曼激光器。受激拉曼变频实验以波长为808nm的光纤耦合半导体激光器(LD)作为抽运激发光源,Nd…YAG晶体为产生基频激光的增益介质,融石英声光调Q器为主动调Q元件,采用紧凑的法布里-珀罗两镜平凹谐振腔可有效地产生波长为1170.9nm的一阶斯托克斯脉冲激光。当注入抽运功率为6.51W,脉冲重复频率为30kHz时,实验产生的一阶斯托克斯脉冲激光的最高平均功率为767mW,相应的脉冲宽度为13.8ns,单脉冲能量为25.6μJ,峰值功率为1.85kW。  相似文献   

20.
为了研究激光二极管端面泵浦a轴切割Nd∶GdVO4自拉曼激光器的热透镜效应对输出特性造成的影响。在808 nm和879 nm两种不同波长端面泵浦条件下,采用横向剪切干涉法测量了连续光自拉曼Nd∶GdVO4激光器的热透镜效应,分别取得两波长所对应的热透镜数值,并将一阶斯托克斯散射光的热透镜效应通过CCD相机成像观测。实验结果表明,879 nm泵浦比808 nm泵浦时激光晶体的热效应有明显减少。为验证以上结果的准确性,实验研究了两种不同泵浦光作用下拉曼光与基频光的输出,获得了最高输出功率为1.4 W和1.6 W的拉曼光,发现当泵浦功率超过20 W,808 nm泵浦输出的拉曼光出现较大衰减。同时,输出808 nm 和879 nm两种光波作用下的基频光,对应斜效率分别为27.5%和38%。并发现小功率抽运时,两波长对应输出区别不明显,只有在大功率抽运状态下879 nm优势才能显现。实验和理论分析说明879 nm抽运更有利于提升Nd∶GdVO4激光器的量子效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号